Category Archives: ENVIRONMENT

Agbogbloscene

 

 

The ever-increasing amount of electronic waste is a major global problem. Based on international studies, it has been calculated that a total of about 5,000 tonnes of electronic waste would leave Finland for developing countries each year, i.e almost a kilo per capita. The amount corresponds to less than five percent of the electronic waste generated annually in Finland. (1) The ‘recycling’ of e-waste in developing countries is much cheaper. The largest recipients of e-waste in Africa are Ghana and Nigeria, in Asia China, India and Pakistan. (2) It is estimated that more than half of the world’s electronic waste passes through official channels to developing countries, where only precious metals are collected from equipment, regardless of the health of workers. (3)

The interest of mining companies is based on the fact that recycling metals is cheaper than digging from the ground./(4)

It is not always so easy to separate used equipment from scrap. Many devices considered waste in Finland still get a new life in the hands of a West African repairman. Along with Nigeria, Ghana is Africa’s largest recipient of European used electronics. (1)

Ghana’s economy has grown rapidly, but living standards are still so low that there is a huge demand for used televisions and computers in homes, offices and internet cafes. Computers and other equipment are also repaired in small workshops.

Cows with open wounds graze on the site

The Agbogbloshie Scrap Yard is located a stone’s throw from the center of Accra, the capital of West African Ghana. There are several similar waste treatment sites on the outskirts of the city, but Agbogbloshie is Ghana’s largest and most researched – and has received the most negative publicity. “Sometimes we inhale toxic gases, and that filth accumulates in the body. But this work is the only way for us to survive, ”says scrap sorter Baba Adi. No one seems to have a respiratory protection. In Agbogbloshie and similar waste treatment areas, Finnish equipment will almost certainly also be disposed of. This is despite the fact that the export of electronic waste from Finland to developing countries is prohibited. Many working in the area are poor people who have moved from northern Ghana to the capital.

Adjoa, nine, sells small water bags to the workers. They drink it and use it to extinguish fires

They are attracted there by big earners. Sorters like Baba Ad can earn between € 150 and € 250 a month, about four times the Ghanaian minimum wage. The electronics waste business in Ghana generates an estimated € 200 million a year and directly or indirectly supports 200,000 people.

Cough and chest pain are common problems in Agbogbloshie. High levels of heavy metals such as lead and iron have been found in workers ’blood and urine samples. They end up in the body from air, water and food purchased from the waste area.

 

Kwabena Labobe, 10, plays on the site. His parents are not able to send him to school and forbid him to burn e-waste

Heavy metals are especially dangerous for toddlers living in the surrounding slums, who play in the scrap yard. Heavy metals end up in babies through breast milk. High levels of heavy metals have been linked in studies to nervous system damage in children and fetuses. There is no use for worthless parts of electronic waste. They are being dumped in informal landfills in Ghana. (1)

In Finland, the value minerals of equipment are collected mainly in industrial plants. Shipping goods to China is cheaper than a truck ride from Jyväskylä to Helsinki. According to one study, it is 13 times cheaper to separate gold, aluminum and other precious metals from electronic waste in China than to dig minerals underground. (1)

Most of the environmental impact of a smartphone, for example, comes from production. Digging metals and making components, or mobile phone parts, requires a lot of energy. (4) Even if you think of a basic cell phone or laptop, they may contain about 30 different metals. These metals come from all over the world. After the metals have been excavated, they go to a smelter or refinery, they may be made into various chemicals, then they go to a component plant and from there to an assembly plant where the equipment is assembled. There may be a real number of factories and operators before the metal ends up in the finished device and from there to the consumer. This is perhaps the main reason why it is really difficult to know where all the particles come from and under what conditions they are made.There can be dozens, hundreds or, for example, Samsung has 2,500 suppliers. (5)

According to a new study, if Europeans used their mobile phones  a year longer than now, it would save two million tonnes of emissions, or about a million cars emissions, a year. The average lifespan of mobile phones in Europe is three years.
In the United States, 400 million electronic devices are rejected each year, an estimated 2/3 of which are operational. (5)

Europe generated 15.6 kilograms of electronic waste per capita. In Africa, the corresponding figure was only 1.7 pounds per capita. (6) And yet, more Africans have access to mobile phones than to clean drinking water. (7)

A total of 50 million tonnes of electronic waste is generated worldwide each year, of which only 20% is recycled. (5)

 

 

References:

(1)  //https://yle.fi/uutiset/3-10472211

(2)  /https://www.kansanuutiset.fi/artikkeli/3093042-eurooppalaisen-elektroniikkajatteen-paatepysakki-on-ghanassa

(3)  / https://www.kuusakoski.com/fi/finland/yritys/yritys/uutiset/2019/elektroniikkaromu-vaarissa-kasissa-on-tietoturvariski/

(4)  https://www.fingo.fi/ajankohtaista/uutiset/suomi-vie-elektroniikkajatetta-kehitysmaihin

(5)  / https://yle.fi/uutiset/3-11141662

(6)  YK:n yliopiston (UNU) raportti  [vuodelta 2016] / https://yle.fi/uutiset/3-9296700

(7)  THEORY BEYOND THE CODES Dust and Exhaustion The Labor of Media Materialism Jussi Parikka

 

Photos:

  1. https://news.itu.int/ewaste-growing-challenge/
  2. https://www.theguardian.com/environment/gallery/2014/feb/27/agbogbloshie-worlds-largest-e-waste-dump-in-pictures / Cows with open wounds graze on the site
  3. https://www.theguardian.com/environment/gallery/2014/feb/27/agbogbloshie-worlds-largest-e-waste-dump-in-pictures /Adjoa, nine, sells small water bags to the workers. They drink it and use it to extinguish fires.
  4. https://www.theguardian.com/environment/gallery/2014/feb/27/agbogbloshie-worlds-largest-e-waste-dump-in-pictures / Kwabena Labobe, 10, plays on the site. His parents are not able to send him to school and forbid him to burn e-waste
  5. https://venturebeat.com/2017/06/13/5-billion-people-now-have-a-mobile-phone-connection-according-to-gsma-data/ Image Credit: Maxx-Studio

 

i(Don’t)*Fixit

Glossy black-boxed

Only once things fail, then we start thinking about their complexity and become aware of how much the tech objects that surround you are glossy black boxes, designed to appear simple and hide the enormous system that lies behind the object and stays far from our eyes. [1]
The whole world of media wants us to see its LED-luminescent and metal-polished side, but it is obscure in every other direction: the management of data signals arriving at our devices is a secreted activity; the production of the hardware is a story never told by the very firms, but only by journalists fighting for human and environmental causes; electronic waste is more of a taboo that both the big tech companies and the developed society do not want to deal with.
However. as Jussi Parikka argues, all these activities are not theoretical, but material [2]: data centers, data cables, coltan mines causing natural depletion in Central Africa, tech industries based on labor exploitation in China, e-waste landfills, and processing plants in Eastern Europe [3], they are all physical realities that shape entires societies. Taking all this dirt into account and using this as perspective, privilege is the possibility of looking at the result, but not the process.

Will to repair

If the single contemporary citizen has long-lived an imbalanced relation of power with companies, about their production methods and ethics, that could only be won through political pressure, he or she has always been able to take a little revenge through maintenance and mending. However, during the last twenty years, this has been made impossible or inconvenient by tech companies.
The activity of repairing has always been an important task throughout the history of humanity: resources have always been limited and the process of mending could be learned. In the last decades, we, the western privileged who have not seen the natural damages and the human exploitation, have been living in the illusion that resources were illimited and overall cheap, and we never learned how to repair our smartphones, computers, or whatsoever.
This has not happened for pure idleness, but a series of reasons [4]:

  1. Companies do not provide customers with software or adequate information for maintenance or repairing. If people start autonomously to deliver self-taught technical information, companies usually try to oppose, like Apple with iFixit. [5]
  2. Often companies do not sell the components either to companies or to non-official repair centers.
  3. Official repair centers are often so expensive that it is more convenient to buy the new version of the product.

Furthermore, if the life-guaranteed product would give a proper reason for the mending, programmed obsolescence conveys a renunciative attitude. In the era of e-waste, nobody would repair something that is made to break.

Right to repair

However, times are changing. People are now meeting in repair cafés [6]: there is awareness around these themes and organizations like The Repair Association (TRA) have been fighting for the electronics right to repair, obtaining some successes [7], even though big-techs try to remain black-boxed since people could hurt themselves while repairing their smartphones or hacker could have easier access to key information. [8] Of course, both of these argumentations have been found inconsistent, a façade for economic interests that is not working so well anymore. Indeed, knowledge is a form of power and, since tech firms have become important actors within the geopolitical system, the democratic citizen must ask for his right of knowledge, in order to be able to work out alternatives from the bottom.


Notes:

[1] Bruno Latour, Where Are the Missing Masses? The Sociology of a Few Mundane Artifacts, in Shaping Technology-Building Society. Studies in Sociotechnical Change, Wiebe Bijker and John Law, MIT Press (1992)

[2] Jussi Parikka, Dust and Exhaustion: The Labor of Media Materialism, Arthur and Marilouise Kroker (2013)

[3] Bulgaria Opens Largest WEEE Recycling Factory in Eastern Europe, Ask-eu.com (12th July 2010)

[4] Karen Turner, Apple wants to kill a bill that could make it easier for you to fix your iPhone, The Washington Post (17th June 2016)

[5] Kyle Wiens, iFixit App Pulled from Apple’s App Store, iFixit (29th September 2015)

[6] Sally McGrane, An Effort to Bury a Throwaway Culture One Repair at a Time, The New York Times (8th May 2012)

[7] Jason Koebler, Internal Documents Show Apple Is Capable of Implementing Right to Repair Legislation, Vice (28th March 2019)

[8] Jason Koebler, Apple Is Telling Lawmakers People Will Hurt Themselves if They Try to Fix iPhones, Vice (30th April 2019)

Greening Google

In the mediatic sphere, there is a strong association between the imaginaries of digitization, electricity, and environmentalism. We do think that an electric car is “greener” than a diesel-fueled one. We do imagine smart cities fully digitized, electric, and merged with the natural ecosystem, like the projects by Studio Stefano Boeri [1]. However, there is a growing perception that this could be a big misunderstanding.

For example, in 2019 OVO Energy has calculated the carbon footprint of emails and asserted that in the United Kingdom “if every email user in the country were to send one less unnecessary email per day, that would reduce carbon emissions by 16,433 tonnes,” [2] and then gave a metaphor to “contain the messy reality of infrastructure” [3]: 81,152 flights from London to Madrid.

The unexpectedness of these data makes this question is then immediate: are we in front of a case of greenwashing operated by the media industry? Formerly known as “eco-pornography” thanks to former advertising executive Jerry Mander, “greenwashing” is a concept born in 1986 by biologist and environmental activist Jay Westerveld, but with still no univocal definition. Riccardo Torelli, Federica Balluchi, and Arianna Lazzini then agree to trace the vague borders of this practice calling it “a misleading communication practice concerning environmental issues.” [4]

According to Greenpeace reports examining the energy consumption of data centers and cloud infrastructures, “if the cloud were a country, it would have the fifth-largest electricity demand in the world,” mostly used for keeping “servers idling and ready in case of a surge in activity” [5]. And at the same time, various companies like Google, Facebook, or Apple send messages about their effort in the construction of more energy-efficient structures and green energy plants that partially cover the enormous energy demand.

However, while looking at this oxymoron, the wisest question is then to ask: can these companies do otherwise? What is the budget percentage spent by GAFAM in researching less consuming infrastructures? And by our governments? If we are judgemental about Google building hydroelectric plants, how should we behave with those who are not even doing this?
And provoking finally: can we accept to have a more mediocre cloud service for a greener planet?


Notes:

[1] Stefano Boeri, Tirana Riverside, Tirana, Albania (2020)

[2] Martin Armstrong, The Carbon Footprint of ‘Thank you’ Emails, Statista (2019) https://www.statista.com/chart/20189/the-carbon-footprint-of-thank-you-emails/#:~:text=The%20sending%20of%20one%20email,at%20on%20a%20national%20scale.

[3] Star and Lampland, Standards and Their Stories, 11.

[4] Riccardo Torelli, Federica Balluchi and Arianna Lazzini, Greenwashing and Environmental Communication: Effects on Stakeholders’ Perceptions, from Richard Welford, Business Strategy and the Environment (2020) https://onlinelibrary.wiley.com/doi/full/10.1002/bse.2373

[5] Jennifer Holt and Patrick VonDerau, Where the Internet Lives: Data Centers as Cloud Infrastructure, from Lisa Parks and Nicole Starosielski, Signal Traffic: Critical Studies of Media Infrastructures, University of Illinois Press (2015)

Fe Simeoni

fesimeoni.it Ig

The Kitsch of Wi-fi Culture

Neatness
One of the principles of the aesthetics of contemporary houses and offices is the hiding of wires. We cannot stand the sight of such technical ugliness: an unpleasant black spot in the plastic clear neatness. [1] The inhabitants of these houses or the workers of these offices live surrounded by all the objects they need in order to survive in nowadays society. Since they manage to do anything through well-designed interfaces put on stylish plastic covers, they never have to think about cables, magnetic fields, chips, and pipelines. And for this very reason, technicalities are carelessly perceived as unessential and can be out of sight. After all, using Mies van der Rohe’s words, “less is more”.

Kitsch
However, the hiding of the media infrastructure that pervades our environments is a false and short-sighted liberation. Quoting from Kundera’s novel The Unbearable Lightness of Being, “kitsch is the absolute denial of shit, in both the literal and figurative sense of the word; kitsch excludes everything from its purview which is essentially unacceptable in human existence.” [2] Indeed, there will be always a moment when those magical objects stop working and need some maintenance or repairing. As Bruno Latour argues, we become aware of the information infrastructure when the device does not function and we are forced to tear that veil of Maya, facing the materiality of the problem. [3]

Aqueducts
If we give a quick glance through history, the refusal of the aesthetics of infrastructure seems more a recent fact. Roman aqueducts are considered beautiful, but nobody will be happy to live nearby a water tower or a trellis. Houses and villages were built along the streets and at the trivia, but nowadays few people would like to have a room with a view on a motorway, a railway or an airport. Watermills and windmills make us dream of idyllic landscapes; power plants devalue the prices of houses of the neighborhood. Print houses and newsies were at the very core of Renaissance cities; whereas data centers and antennas are located aside.

– Roman aqueduct, Segovia, Spain

Pompidou
If mainstream architecture and design can be considered kitsch in Kundera’s terms, it must be said that not all the professionals of these fields behave in the same way. Indeed, there are many examples of deliberately exhibited technicalities in architecture, such as Centre Pompidou by Renzo Piano [4] (defined as a “love at second sight” by the National Geographic) or the Tōkyō Tower by Tachū Naitō [5]. Aren’t those examples of infrastructural honesty, provoking all the non-engineers that the materiality of information is not complicated, but complex and fascinating? Aren’t they revealing us that this is what our society is made of and that we should understand?

– Centre Pompidou, Paris, France

– Tōkyō Tower, Tōkyō, Japan

Zen
The novel by US philosopher Robert Maynard Pirsig, Zen and the Art of Motorcycle Maintenance is about that. Differently from a Romantic approach, Illuministic beauty lays on the rational comprehension of and unmediated astonishment for the relations between parts of a multiplicity. Through knowledge, the observer can appreciate the object on a more profound level, whereas “romantic” people are condemned to a life of incomprehension and irritation. [6]

Fetish
Indeed, the average human is illiterate about the materiality of media infrastructure: he prefers to ignore such irrelevant details and gets annoyed when he has to deal with this matters. In his “romantic” perspective, the media he interacts with are magical objects that work due to some reasons beyond the possibilities of his comprehension. He feels much more secure in the plastic-covered illusion that there is nothing more to understand but the interface on the surface.

We do not want to see cables and wires because we do not want to see our ignorance.

Notes

[1] Lisa Parks and Nicole Starosielski, Introduction, in Signal Traffic: Critical Studies of Media Infrastructures, University of Illinois Press (2015)

[2] Milan Kundera, The Unbearable Lightness of Being, 68 Publishers (1984)

[3] Bruno Latour, Where Are the Missing Masses? The Sociology of a Few Mundane Artifacts, in Shaping Technology-Building Society. Studies in Sociotechnical Change, Wiebe Bijker and John Law, MIT Press (1992)

[4] Renzo Piano, Richard Rogers and Gianfranco Franchini, Centre Pompidou, Paris, France (1977)

[5] Tachū Naitō, Tōkyō Tower, Tōkyō, Japan (1958)

[6] Robert Maynard Pirsig, Zen and the Art of Motorcycle Maintenance: An Inquiry into Values, William Morrow and Company (1974)

Fe Simeoni

fesimeoni.it Ig

The Medium (Infrastructure) is the Message

Infrastructures have been in multiple forms even before the term was ever used, and that the concept itself has ever since became super broad – coming from printing to highways- but for this matter, it is important to mention that now more than ever many present themselves as being “discursive” base constructions but in reality, they are quite physical and rely on the poor awareness of its physicality and its implications to keep as they are.

It is also important to note that infrastructures come with capacities of distorting political realms and therefore affecting physical borders, people’s realities and navigation, and capability to be part of their society, we can think of the first postal service in Rome up to the delimitation of data usage in some countries. Not only the presence of these infrastructures in our daily life and their underparts, such as daily life devices, model our accessibility, communication reach, but our possibilities of motion and displacement around certain areas. Also being users of these devices, and therefore infrastructures, we become essential pieces of their functionality.

In the case of daily devices, such as smartphones, which are power-tools that have the illusion of progress and freedom but come with a certain non-monetary cost attached, when we become dependant on them we first agree to conditions we aren’t even aware of, and are tie to policies we are not familiar with. We delegate more and more mundane also primal tasks and become dependant on many functions, we can not rely on our own without them and also need the extension functions they provide, like the capacity of being simultaneously at more than one place or having access to information otherwise inaccessible, therefore we are vicious consumers of data, apps, more devices, most likely always persecuting the latest models for better and efficient results.

The real cost behind this is not only individual and doesn’t rely only upon the terms of agreement we as users sign on every service we decide to acquire, the real cost, unfortunately, relies on the physicality of these discursive based infrastructures that depend on land, natural resource, energy and by incrementing the consumption the political power increments and the mediums and ways are not necessarily the most conscious but most likely always the most profitable and by not being mindful consumers or users of these infrastructures, which are definitely hard to avoid and almost unrealistic to imagine ourselves out of them, we contribute to this power chain.

Francesca Bogani Amadori

INFRAGRAPHY Vol. IV. Fall 2020 [Published]

Infragraphy is a compilation of critical student artworks and short essays dealing with the materialities of media technologies and their environmental implications. The volume presents artworks and texts from the course ‘Media and the Environment’ in the Fall of 2020 at the Department of Media, Aalto University. The course is a series of scholarly readings about and around the themes of media including media’s relations and impacts on the so-called Anthropocene, thermocultures of media, ecologies of fabrication, media and plastics, Internet of Things, Planned Obsolescence, e-waste, and media’s energetic landscapes. A key approach of the course is to introduce artistic methods and practices that could address emerging media materialities. The student artistic outputs are presented in a final exhibition.

Download PDF:http://blogs.aalto.fi/mediainfrastructures/files/2020/12/Infragraphy_Fall2020.pdf

This fourth volume of Infragraphy compiles a series of artworks and companion essays as a response to the contemporary discourse of political economy of media and related environmental implications. The volume begins with Lassi Häkkinen’s Screen of Death that plunges us through the computer interface and web browser to a distant cobalt mine in the Democratic Republic of Congo. His accompanying essay meditates on the disjunction between the digital, mining and labor, as a way to reflect on extractive practices. Phuong Nguyen’s De-Terraforming Impacts of Humans on Earth takes us on a virtual tour of damaged landscapes as a result of the digital starting from the environs of Silicon Valley, Bayan Obo mining district in China, to the Great Pacific Garbage Patch. Cloud Materialities by Qianyu (Sienna) Fang sets up a game-like low-tech alternative computer interface to examine critical themes related to the various materialities of digital media. Oskar Koli’s provocative kinetic sculpture installation makes us ponder on deep time, automation, and fossil fuels. The installation sets up the recursive stroke of a programmed and automated feather that brushes off grains from a piece of coal. Koli insists on calling it ‘Untitled’ since the viewer could very well have a multitude of interpretations.

Addressing environmental damage, Anze Bratus uses pollution datasets along with urban images from around the world to create generative soundscapes. His installation Acoustics of Pollution highlights how pollution levels as a result of a legacy of industrial activities and fossil fuels exponentially increase and damage the environment. Studies on Invisibilityby Tuula Vehanen examines urban radiation, especially with regard to 5G networks in Helsinki. Vehanen’s photography attempts to render radio frequency visible and provokes us to consider the impacts of exposure to humans and ecosystems. By poetry and painting, Dominik Fleischmann’s Restless Bodies reflects on technology and purity. His work makes us think of where technological necessity of perfection and extraction might eventually lead us. Finally, Mirya Nezvitskaya presents a performance installation Collecting Your Waste that combines her research in materiality, posthumanist philosophy, performance and artistic practice. Her work challenges us on many levels by threading together colonization, extraction, plastic waste and performance.

Samir Bhowmik
9 December 2020
Helsinki

Virtual Exhibition: https://www.aalto.fi/en/news/the-anthrobscene-media-and-the-environment-course-exhibition

Solar System as Waste

Benjamin Bratton’s “Terraforming” collection of essays comprises of theoretical ideas, that read like a manifesto and an experimentation of ideas about how the Earth could develop. In my humble opinion, the essays sound as radical utopias in a way, even though it does answer many questions. When thinking about climate crisis and environmental disasters, I couldn’t help but wonder, do we require a more practical approach? Do we even have enough resources to terraform our planet Earth? Is it a realistic approach? And how can we clean all of our planet?

As an experiment, I have created a small art project of our Solar system from the everyday waste around me.

 

Landscapes, infrascapes, greenscapes

The landscape and what our image of the landscape is like is due to a long tradition that includes traditional landscape painting, traditions of aesthetics, place of residence and a landscape catalog conveyed by the media. A landscape is often thought to be beautiful when it does not directly show the human handprint. “In Finland, it is customary to talk about ‘untouched nature’. Few proverbs are so untrue and downright false, ”writes Ismo Tuormaa [1] Pure or untouched nature as a concept is misleading. According to research, old, natural or nature-like forests make up well below 5 per cent of Finland’s forest area. It may take a hundred years to a thousand years to return to a perfect natural state, depending on the tree species in the forest. In the United States, for example, it has been estimated that the restoration of felled deciduous forests to virgin forests will usually take one or two complete tree generations, ie 150 to 500 years. [2]

Åland archipelago

 

Infrascapes

Urban landscapes rest on built infrastructure. The infrastructure is visible and invisible at the same time. As long as it works, it is not thought of. And yet the urban landscape is very strongly shaped by infrastructure. Media exists increasingly as the true landscape forming force. [3] Infrastructures as pipes, power plants, highways, sewers, pylons carrying the high voltage, cables, transmission Towers, data centers, wasteland and power lines are central to shaping our cityscape. Ports and power plants are monuments of our time. There is a certain beauty in manufactured landscapes, says Samir Bhowmik.

 

The disadvantages of the built infrastructure are pollution, radiation and the removal of living space from other organisms, as well as the energy, natural resources and the resulting pollution used to create the infrastructure.

According to research, the urban environment affects our well-being in many ways, for example by increasing stress, raising blood pressure and disturbing concentration, while nature calms down. Positive effects on, among other things, heart rate, blood pressure and muscle tension can be seen after just a few minutes spent in nature.

According to biophilia theory, innate attachment to all living things is the foundation through which we have been able to achieve sustainable forms of life in general. Literally, “biophilia” means love of life and living systems. [4]

Man has made a decisive contribution to the reduction of species diversity. In order for nature to sustain life, its diversity must be safeguarded. Indeed, species interactions play a key role in diversity. No species thrives or functions in isolation, but in conjunction with other species

Roughly speaking, it can be said that we have found and named about 20 percent of the Earth’s species. This means that species that we do not yet know and that could be potentially useful are constantly disappearing from the world. We may lose species that could have been the origin of a new drug or a new food source. While the situation seems inconsolable in many ways, researchers firmly believe there is still hope. One reason for optimism is that, compared to previous generations, we have much more information and tools to solve problems. [5]

Greenscapes

Green infrastructure is a design approach whose key principles include a holistic approach, cross-sectoral systems thinking, the pursuit of multiple benefits (ecosystem services, but also public health and economic benefits, for example) and a long-term strategic perspective on urban habitat management.

A dense urban structure is beneficial for mitigation measures, but the urban environment is vulnerable to the changes brought about by climate change. Mitigation and adaptation should therefore be seen as parallel goals that must both be taken into account in the development of the urban environment. It should be possible to take the next step past mitigation measures towards adaptation. Resilience is a new key concept in sustainable development. [6]

In England, a London Green Grid has been created which seems to be a very interesting and comprehensive green infrastructure program. The main goals for green infrastructure planning in London are climate change mitigation and adaptation. In this context, flooding and heat island are seen as key threats. Other key goals include increasing green infrastructure in the metropolitan area, for example by planting 10,000 new trees in the metropolitan area. In Finnish cities, compaction and thus the shrinking of the green sector in cities is still ongoing. [7]

Various innovations have been and are being developed to build a greener infrastructure. The most radical green infrastructure solution is Bosco Verticale in Italy. Bosco Verticale is a residential building consisting of two buildings, in which dizzying tree plantings and other vegetation have been planted in the building. Recycled water and energy produced by solar panels are used for irrigation.

The Bosco Verticale (“Vertical Forest”) in Milan has hundreds of trees and more than 2,000 plants embedded into its façade

 

Nature-based solutions currently seem to be the key word for EU environmental funding. [8] Biomimetics is an activity that seeks to understand innovations produced by nature and then transfer them to human activities. Identified benefits include e.g. energy efficiency, utilization of photosynthesis, durable and lightweight structures, and resilient solutions for different situations. [9]

Since 2007, the Baubotanik research team at the University of Stuttgart has been developing structures that combine living trees and steel structures. The idea is therefore to develop and test living load-bearing structures. [10] Baubotanik describes a construction method in which structures are created by the interaction of a technical joint and plant growth. For this purpose, living and non-living building blocks are interconnected so that they grow together to form a plant-technical composite structure: The individual plants merge to form a new, larger overall organism and the technical elements grow into the plant structure. For this approach, the term building botany was established in 2007 at the Institute of Fundamentals of Modern Architecture (IGMA) at the University of Stuttgart.

The Baubotanik research team is developing structures based on living trees.

 

Living root bridges in Northeast India are grown, functional structures from the antenna roots of the Indian rubber tree (ficus elastica). The khasi and jainti peoples of southern Meghalaya have developed various techniques to take advantage of the growth stages of the rubber tree. Increased bridges connect houses, fields, villages and markets. [10]

Green roofs and green walls are essential building blocks of green infrastructure in a densely built big city. Productive roofs will be the thing of the future. One of the test roofs also had a combined green roof and solar panels. This solution also has its own name “biosolar roof”. [7]

Oslo is a good example of the innovative nature of small town landscaping. Green walls and roofs have expanded into grass fields with tram rails, natural meadows in the urban area and biogas-heated  benches. Oslo won the European Green Capital 2019 designation.

CityTree Project

 

A green city like Helsinki is admired elsewhere. The challenges in greening cities and building green infrastructure are in a really dense urban structure at a completely different level compared to Finnish cities, many of the implemented projects are expensive and still remain in the degree of green frosting. It is much easier to take green infrastructure into account during design and construction. [7]

Perhaps green infrastructure can act as a bridge between industrial infrastructure and the natural environment.

 

reference:

  1. Samir Bhowmik and Jussi Parikka, “Infrascapes for Media Archaeographers,” Archaeographies: Aspects of Radical Media Archaeology, eds. Moritz Hiller and Stefan Höltgen, Berlin: Schwabe Verlage, 2019: 183-194.

 

photos:

  1. © tuula vehanen

2. Image: Joe Mud,CC BY-SA 2.0, via IFPRI Flicker

3. The Bosco Verticale (“Vertical Forest”) in Milan has hundreds of trees and more than 2,000 plants embedded into its facade, Courtesy of Luca Nebuloni/Flickr

4.  Courtesy of Paolo Rosselli/Stefano Boeri Architetti

5.  The Baubotanik research team is developing structures based on living trees.(http://www.baubotanik.org/en/)

6. https://www.ar.tum.de/en/gtla/research/living-root-bridges/

7. Monica Thorud Olsen, retrieved 08/24/2018

 

 

1]  https://suomenluonto.fi/uutiset/koskemattoman-luonnon-myytti/

[2]  /https://fi.wikipedia.org/wiki/Aarniomets%C3%A4

[3]  Infrascapes for Media Archaeographers  /Samir Bhowmik & Jussi Parikka

[4]  https://www.vihreaveraja.fi/@Bin/220277/luonnon+vaikutukset+hyvinvointiin.pdf

[5]  https://www.auroralehti.fi/lajien-tuho/

[6]/ https://blogs.aalto.fi/virma/2015/03/25/ilmastonmuutos-hillinnasta-eteenpain-kohti-sopeutumista/

[7]  /https://blogs.aalto.fi/virma/2015/08/04/vihreaa-infraa-lontoolaisittain/

[8]  / https://blogs.aalto.fi/virma/2015/11/29/bosco-verticale-ja-baubotanik-marraskuisia-unelmia-wienissa/

[9]  /https://www.muoviyhdistys.fi/2019/12/13/kummajaiset-biomimiikka-ja-strateginen-innovaatio/

[10] / https://blogs.aalto.fi/virma/2015/11/29/bosco-verticale-ja-baubotanik-marraskuisia-unelmia-wienissa/

[11]  /https://www.ar.tum.de/gtla/forschung/baubotanik/

Internet of Things (IOT)

Internet of Things (IOT)

An increasing number of devices are electronic and networked with each other and connected to the Internet. Radio transmitters connected to the devices collect, identify data via compatible networks, and communicate with each other. These devices are called IoT, or Internet of Things. According to a broader definition, cyber systems are also called IoTs. It can be defined as a dynamic, i.e. constantly changing and evolving, global network infrastructure, i.e., a network infrastructure in which physical and virtual “objects” have an identity, i.e., identity, physical characteristics, and a virtual personality. Intelligent interfaces, ie user interfaces that can, for example, adapt to the needs of different users or anticipate user activity, transmit information seamlessly between objects and the data network. The goal of development is for IoT to enable people and devices to connect anytime, anywhere, anytime. IoT increases everyday comfort and ease of use and can be used by both society and individual citizens. [1]

photo 1

The devices are characterized by the fact that they can be used to combine anything, such as smart watches, security systems, activity bracelets, smart homes, remote heating devices, airplanes, gates and doors, home appliances, consumer electronics, just to name a few. The Internet of Things consist of a growing list of Intelligent devices that would augment, optimize, and interconnect every aspect of our daily lives. An object, such as a car, electrical appliance, or grocery, can connect directly to the Internet through a computer component that has an IP address. The component can be, for example, a sensor, an RFID chip or a WLAN chip. Sometimes it is sufficient for the object to have an identifier, such as a parcel delivery code or a unique identifier modified from the registration number of the vehicle to enable the object to be identified on the Internet. The object does not then need to be connected  directly to the internet. Energy companies have provided consumers with smart meters that provide consumers with real-time information on consumption and energy companies can remotely read meters. The Internet of Things can also be utilized in logistics, in which case, for example, food can be measured ambient temperature in the supply chain, and alerts you if the temperature exceeds or falls below a certain limit. [2]

In recent years, digitalisation has also raised its head in the most traditional fields, and drones, for example, are already used in reindeer husbandry to detect reindeer herds from the air. In Oulu, reindeer herding is being developed under the auspices of IOT technology, and as a result, a Rudolf device was created, which can be used to monitor the health status and location of reindeer through a mobile application. In the future, the technology could even be used to prevent animal diseases and traffic accidents. With Rudolf, tracking even a single reindeer is effortless. [3]

photo 2

Digital applications extend their tentacles everywhere in society. Electronic warfare is also present on the battlefield with ubiquitous armored vehicles at the forefront of the attack, in support of the air operation and as part of the reconnaissance system on land, sea and air. Electronic warfare inquires and disrupts enemy systems and protects its own forces from the effects of enemy electronic warfare. [4]

In 2020, the number of connected devices per person was 6.58 and the total number of devices was 50 billion. Smart home appliances in households is highest in China, second highest in the US and third highest in the EU8. [5] Every second 127 new devices are added connected to the internet.

The Internet of Things as a concept is often dated to Mark Weiser’s work on ubiquitous computing at Xerox Parc in the 1980s and 1990s, 9 and as an actual term is dated to 1999, another pivotal  moment in the concept’s  elaboration  is 2008, the year when Internet-based machine-to-machine connectivity surpassed  that of human-to-human connectivity.

Behind the screen

Household objects that are currently being transformed into electronic technologies is not only lengthening, but also beginning to constitute a categorically different media “ecosystem.” How might an attention to these material and environmental effects provide an opportunity for generating new areas of environmental intervention in relation to sustainable media? We can no longer just stare at our own equipment but we must also try to see it from a broader perspective. What lies beyond the screen, of how hardware unfolds (avautua)  into wider ecologies of media devices, and of how electronic waste may evidence the complex ways in which media are material and environmental?

Energy meters are one  example of how recurring access to data about energy consumption is meant to influence behaviour and bring about a reduction in energy use. Attempts have been made to study the routes of how waste is travelling across United States by adding electronic tags into the trash items and tracking their journey.

“Thingification” is an overtly material approach to the previously “virtual” concerns of digital media, and is an industry strategy that is meant to expand the reach, capacities, and economic growth of the Internet. Thingification may make any number of activities and practices within our everyday lives more efficient, sustainable, and safe

Rethingification does not simply involve mapping out the static stuff that constitutes any particular media technology, but rather requires attending to the ways in which things attract, infect, and propagate mediatized relations, practices, imaginaries, and environments. A critical and material media studies might then begin to develop methods and modes of practice that adopt an experimental set of approaches to re-thingification.

Re-thingification of things

IoT has a lot of potential, but its information security is weak or almost non-existent, as systems and devices have been developed for the market quickly and often without compromising on information security requirements. Another challenge is the lack of concrete preparedness for the potential threats to social systems posed by the IoT. For example, in industrial, transport and energy production sites, poorly protected IoT activities can cause significant damage, the effects of which can extend to society at large. [1]

A society built on a large sector of digital information networks is vulnerable in many ways. We have got a taste of the lack of information security in an extensive data breach that targeted patient data in Finland. Cyber ​​hacking can do great damage to the lives of individuals and damage the structures of society. Examples include ensuring the security of power plants, electricity networks and water distribution.

Computer hackers, organized crime, and various fanatics form their own war front, with a front line everywhere. Organized crime can afford to buy the best computers and encryption software on the market. This allows drug offenders to exchange information under the noses of authorities with their 128-bit encryption. Breaking such encryption, according to Adams, will take 40 billion years from a Cray supercomputer. So figuring out the code is laborious even for the U.S. security agency NSA, which is said to have a nearly three-acre cave full of supercomputers. In his book “The Next World War” (1998), James Adams says that high technology means not only superior military power but also a very high degree of vulnerability. For example, a touring man managed to black out four U.S. air control centers while burning a dead cattle in a pit they dug. Below happened to be an important fiber optic cable. [6]

photo 3

As one text collected in The Crystal World Reader, and drawn from the US National Mining Association, remarks, there are at least sixty-six individual Minerals that contribute to a typical computer, and “it should be evident that without many Minerals, there would be no computers, or Televisions for that matter. The minerals needed to build computer networks are not an inexhaustible natural resource. Digital waste is also something that cannot be ignored in the debate on digital information networks.

What do these distributed arrangements and materialities of computation enable, what processes and relations do they set in play and require, and what new environmental effects do they generate? The actual and anticipated debris of electronics might provide one way that we could tune into these material processes to develop practices that speculate about material politics and relations in order to be less extractive and harmful. But this approach would require a re-thingification of things, particularly the Internet of Things.

Reference:

Jennifer Gabrys, “Re-thingifying the Internet of Things,” Sustainable Media: Critical Approaches to Media and Environment, eds. Nicole Starosielski and Janet Walker, New York and London, Routledge, 2016: 180 – 195

[1] https://peda.net/jyu/it/do/kkv/6kvjvtt/6tth/iotieei2

[2]  https://www.ficom.fi/ict-ala/tilastot/iot-esineiden-internet

[3]  https://www.dna.fi/yrityksille/blogi/-/blogs/oulussa-porotaloutta-kehitetaan-nb-iot-teknologian-siivittamana

[4]  7https://upseeriksi.fi/koulutusohjelmat/maavoimienko

[5 ]  The Mobile Economy 2020, GSMA

[6]  https://www.oulu.fi/blogs/seuraava-sota-on-digitaalinen

photos:

1. https://peda.net/jyu/it/do/kkv/6kvjvtt/6tth/iotieei2/iotieei2/e

2. https://www.dna.fi/yrityksille/blogi/-/blogs/oulussa-porotaloutta-kehitetaan-nb-iot-teknologian-siivittamana

3. https://www.digital-war.org/blog

The Right to Repair

In their article “Zombie Media: Circuit Bending Media Archaeology into an Art Method”[1], Garnet Hertz and Jussi Parikka propose repurposing media and electronics that are past their prime as a method of media archeology and an artistic practice. Reading this, I wondered how the practice will be affected by the miniaturisation of electronic components. Gone are the days of easily modifiable circuits with through-hole electrical components; modern circuits use surface-mounted components and multilayered PCB boards. Most examples of circuit bent electronics are old for a reason: modern electronics are difficult to modify.

Through-hole resistors

Surface-mounted resistor

Related to the difficulty of modification is the challenges in repairing electronics. Modern electronics are notoriously difficult to fix once broken. This difficulty is in part caused by their complexity and the aforementioned modern construction methods, but crucially it is also because of purposeful obstruction by the companies that produce the electronics. Not only do companies by design make the electronics difficult to repair, for example by using proprietary screw heads to make the cases difficult to open, but many, such as Apple Inc, make it contractually illegal to even open the device. No wonder that 57% of Europeans report not fixing their phones because of expensive or unavailable repair options[2].

In reaction to this, a movement has emerged in the past decade calling for the right to repair. It advocates for legislation which would make repairing easier, by making contractual repair restrictions illegal and by compelling companies to release documentation for how to repair their devices. Having originally gained traction in the US in cases such as automobile repair and farmers not being allowed to repair their tractors, the movement has now caught root in the European Union. A “Circular Economy Action Plan” draft in 2020 calls for the standardization of parts, such as charge cables for phones, and for making it easier for consumers to have their electronics repaired[3].

[1] “Zombie Media: Circuit Bending Media Archaeology into an Art Method”, Garnet Hertz & Jussi Parikka

[2] “Identifying the Impact of the Circular Economy on the Fast-Moving Consumer Goods (FMCG) industry: Opportunities and challenges for businesses, workers and consumers – mobile phones as an example”, European Economic and Social Committee, 2019,  https://www.eesc.europa.eu/en/our-work/publications-other-work/publications/identifying-impact-circular-economy-fast-moving-consumer-goods-fmcg-industry-opportunities-and-challenges-businesses 

[3] “Europe Wants a ‘Right to Repair’ Smartphones and Gadgets”, New York Times, 2020, https://www.nytimes.com/2020/03/12/world/europe/eu-right-to-repair-smartphones.html

Plastopocene [*]

We are used to take plastic for granted as part of our lives. Plastic is everywhere. More than 300 million tonnes of plastic is produced each year, and according to a UN report, more than 9 billion tonnes of plastic is produced worldwide [1]. By the early 20th century, plastics were used in electric lighting, telephones, wireless telegrams, photography, and sound recordings. In fact, when we look at media devices commonly used over the last century, we find that plastics were crucial to a number of popular media technologies. In 1948, Columbia records introduced a vinyl record. Lightweight polycarbonate plastic is also used in c-cassettes, MiniC´Discs, DVD and Blu-Ray.

Plastic is present in the food packaging, clothing, electronics and pharmaceutical industries, as coatings, in the photographic and film industries, in consumer goods, in childcare – almost everything around us. The electronics industry in Europe uses an estimated 6% of plastics [11] and15-25% of the microelectronics in use (eg smartphones, data computers, tablets) is plastic. Plastic is an ideal insulator because it has poor electrical and thermal conductivity, good formability and is lightweight.

Plastics can be divided into thermoplastics, which do not change when heated and can be reshaped, and disposable plastics, which are used in circuit boards, for example, due to their plasticity and good heat resistance. It usually ends up in a landfill.

In addition, there are bio-based plastics, which refer to plastics processed from renewable raw materials of biological origin. Biodegradable plastics are materials that degrade through a biological process into carbon dioxide and water. Contrary to popular belief, bio-basedness is not a prerequisite for biodegradability or vice versa. [2]

A 1956 world oil production distribution, showing historical data and future production, proposed by M. King Hubbert – it had a peak of 12.5 billion barrels per year in about the year 2000. As of 2016, the world’s oil production was 29.4 billion barrels per year

 

From deep time to the 6th massextinctions

Over more than two hundred years, technocultural systems have transformed significant shares of the Earth’s fossil fuels into heat and plastic. The formation of fossil fuels takes thousands of years, the culture of the plastics industry – extraction, transport, trade, fractionation and conversion into monomers and then polymers and then products that are sold, used and disposed of – takes place within a few months (Marriott and Minio-Paluello 2014) [12]

The overall impact of human societies on earth has led to the anthropocene, a new geological era.

A huge number of living systems are not keeping pace with the ecological changes caused by anthropogenic industrial activities. While some species thrive in these changed conditions, there is an ongoing sixth wave of mass extinction that will be of immense importance to our planet and habitats. This is despite the fact that more than 99 percent of the species that have occurred on Earth have already become extinct (McKinney 1997: 110).

An estimated 5.25 trillion plastic particles floating in the oceans with an estimated total weight of 270,000 kilos. Plastic debris accumulates into large spins that only collect more debris with them.

By 2050, it is estimated that there will be more plastic in the seas than fish.

-Plastics are known to release chemicals that are harmful to the environment, but according to a new study, they also release the greenhouse gases methylene and ethane into the atmosphere. Polyethylene, which is also the most common type of plastic, proved to be the worst producer of greenhouse gas emissions. Polyethylene is used in plastic bags, among other things, and accounts for more than a third of all plastic produced in the world. [3]

Certain forms of bacteria have evolved to inhabit the plastic vortices of the oceans and use it for food. Bacteria are responsible for the most significant changes in the biosphere, the atmospheric oxidation event that occurred 2.3 billion years ago. Microbes also live in the digestive tract of all vertebrates and are responsible for digestion. This raises the question of what we should protect. Aesthetic differences are crucial here; is an easier to feel compassion for a penguin than a micro-organism that requires an electron microscope to examine.

E-waste management, recycling,  environmental pollution and health risks

Since 2015, the global rapidly growing amount of e-waste has exceeded 42 million tons. This poses an ecological, health, ethical and colonialist problem. The global north supplies enormous amounts of waste for recycling and storage in the global south. In the words of geographer David Harvey, “the capitalist economy does not solve its problems, it only moves them from one state to another” **. [4]

Electronic waste mountains are a serious environmental and health risk. Equipment often contains mercury, lead and other heavy metals, various fluorescent and flame retardants, and plastics that, if improperly handled, can contaminate soil, air, and water.  [4] The primary problem of incineration arises from the presence of halogenated flame retardants which release toxic gases. Metals are separated from circuit boards by heating and dissolving in acid. When soaking, wastewater enters rivers as well as soil. In addition, the chemicals used in e-waste treatment are very dangerous to health, and respiratory diseases, for example, are common among scrap collectors in developing countries. Many of them are minor children. E-waste toxins can also cause a variety of birth defects, nerve damage, cancer, and many other health hazards [4]

In the words of geographer David Harvey, “the capitalist economy does not solve its problems, it only moves them from one state to another” **. [5]

Photo: IMPEL-EU European Union Network for the Implementation and Enforcement of Environmental Law

Chemicals that disrupt the endocrine system

Many chemicals are used in the processing of plastics and plastic compounds, which have been found to interfere with the human endocrine system, which is the body’s hormonal function responsible for regulating metabolism, growth, development, reproduction and mood. More common endocrine diseases include diabetes, bone loss, obesity, and various thyroid diseases. [6] How important are the chemicals in plastic compounds in the pathogenesis of these living standards diseases.

The greatest concern about the presence of BPA and phthalates has been raised in food and beverage packaging where chemicals can where chemicals can dissolve and be ingested. In particular, the use of BPA-based polycarbonate in baby bottles has been a concern and in many countries their sale is prohibited by law. BPA and phthalates can be found on computers, CDs and DVDs, and, surprisingly, also on thermal papers, commercial receipts, and ATM printouts. It has been found that BPA is absorbed more efficiently if the skin is wet or oily, whether it has been in contact with e.g. moisturizer or sweaty.

Life after plastic

Modern industrial societies are based on the idea of ​​continuous economic growth. Full employment and welfare services are dependent on economic growth, as are debt and growth-based financing and investment systems. A halt in economic growth would mean the dismantling of services and support systems, debt restructuring, bank failures, high unemployment and the downsizing of the entire welfare state. [7]. Growth and development are largely based on the oil industry, the production of plastics and thus the media at the heart of cultures. Communication, transport, stock exchanges and logistics are built on digital media.

In discussions about the collapse of industrial society, the most topical issue is most often the peak of world oil production defined by M. King Hubbert, followed by the inevitable decline in total production. As oil is the world’s main source of energy and its importance is further emphasized in key areas of society’s infrastructure, the oil peak is considered to be an insurmountable problem and the cause of the collapse. What makes the issue topical is the fact that many people assume that the oil peak was passed between 2005 and 2011, when the world economy would have already reached its peak and would soon go into recession. For example, the financial crisis of 2007-2009 is considered to be the result of an oil peak. [8]

Heinberg does not believe that the oil peak can be solved by technical solutions, as the world economy and technological development are far behind the current problem, oil is also crucial for the production of other forms of energy, and a viable form of energy would only delay rather than prevent a collapse. In his book Powerdown; Options and Actions for a Post-Carbon World, he puts forward as a primary solution a cultural change of direction in which the world abandons the pursuit of growth and high consumption. [8]

Jonathan Huebner, for his part, defined the innovation peak of technological development by comparing the list of major inventions from the Middle Ages to the present with the world’s current population. He found that the peak of innovation was reached as early as 1873 and that the average innovativeness of the world’s population declined throughout the 20th century, despite the fact that the population was more educated and more funds were devoted to research. Based on the innovation curve he has formed, he estimates that in 2005, 85% of all innovations had already been made. According to him, technological development is limited not only by what is physically possible to invent, but also by what is economically possible or sensible to invent. [9]

The collapse of industrial society is seen as a dramatic chain of events that would result in famine, epidemics, the collapse of democratic systems, population displacement, the collapse of safety nets and chaos. As a significant difference from historical collapses, the collapse of industrial societies is seen for the first time in world history as a purely global phenomenon. On the other hand, if humanity is able to renew its culture and values, according to Thom Hartmann, it is possible to build a new society after the collapse that is not based on private property, growth, subjugation and destruction and could therefore be more permanent in structure. [10]

Alternatives are being sought for oil and substitutes are being developed for plastics, such as sunflower oil, seaweed, cellulose and milk. The production of biodiesel, which takes land away from food production, has already been criticized. What about when you want to make more bio-based plastics on the market. It therefore makes sense to focus on the development and production of bio-based plastics in raw material sources that do not compete with food production, [11]

Of the substitutes being developed as a sustainable solution, there are hardly any. They do not solve the problems of continued growth and over-consumption or acquisition. The only solution on a sustainable basis is to seek out the structure of society, worlds of values ​​and material-centredness from society and to look for alternative models of action.

Painting

REFERENCES:

-TECHNOFOSSILS of the ANTHROPOCENE
Media, Geology, and Plastics / Sy Taffel

* ´Plastopocene´ -term copied from: https://ekokumppanit.fi/muoviopas/

[1]  /https://www.maailma.net/uutiset/tuore-tutkimus-muovi-luultua-vaarallisempaa-paastaa-ilmakehaan-kasvihuonekaasuja

[2] s/https://www.pakkaus.com/biopohjainen-ja-biohajoava-muovi-eivat-tarkoita-samaa/

[3]  /https://www.maailma.net/uutiset/tuore-tutkimus-muovi-luultua-vaarallisempaa-paastaa-ilmakehaan-kasvihuonekaasuja

[4]   /https://eetti.fi/vastuullinentekniikka/

/https://www.maailma.net/nakokulmat/muovigaten-jalkipyykki-mita-muovin-dumppaaminen-kehitysmaihin-kertoo-taloudellisesta; **citation  from David Harvey´s lecture ’The Enigma of Capital”, which was arranged in  London School of Economics 26.4.2010

[5] /https://www.maailma.net/nakokulmat/muovigaten-jalkipyykki-mita-muovin-dumppaaminen-kehitysmaihin-kertoo-taloudellisesta; **citation  from David Harvey´s lecture ’The Enigma of Capital”, which was arranged in  London School of Economics 26.4.2010

[6]  https://www.vaasankeskussairaala.fi/potilaille/hoito-ja-tutkimukset/erikoisalat/storningar-i-hormonbalansen-och-amnesomsattningen—endokrinologi/

[7] “Hyvinvointivaltio vaarassa”, Helsingin Sanomat 30.9.2010, s. A5

[8]  Grupp, Adam: Peak Oil Primer energybulletin.net. Energy Bulletin

[9]  Huebner, Jonathan: A possible declining trend for worldwide innovation

[10]  Hartmann, Thom: The Last Hours of Ancient Sunlight. New York, NY: Three Rivers Press, 1997

[11] /https://ekokumppanit.fi/muoviopas/

[12]  TECHNOFOSSILS of the ANTHROPOCENE
Media, Geology, and Plastics

Sy Taffel

The role of Internet of Things creators

The internet is not only about connecting people but also about connecting things. Technological developments have enabled things to sense and share their experience with other things, with or without human interference. (Hougland, 2014). Jennifer Gabrys (2016) takes a focus on the Internet of Things’ (IoT) environmental impacts, pointing out that the increase of IoT devices and applications or “Thingification ” also means the proliferation of digital artifacts and infrastructures. By 2025, it is estimated that there will be more than 21 billion IoT devices (Symanovich, n.d.). Below is a data visualization of the Top 10 IoT segments in 2018 based on 1600 real IoT projects (Scully, 2018). The explosion of IoTs innovations certainly leads to opportunities for both economical and societal developments, while raising critical questions concerning digital obsolescence and thus, its impact on the environment. 

In my opinion, important questions for IoT creators to ask when inventing new ideas are: How does the Internet of Things actually enhance our everyday lives? What are the environmental improvements that are meant to be achieved through these devices? and What ethical implications should be imposed on IoT designs? With the understanding that things are ongoing processes and always with a consequence (Gabrys, 2016). We should pay attention to the materials of our products, to understand their process, and their impacts. Besides, it is our responsibility to communicate with decision-makers on actions that not only minimize negative impacts but also create positive changes. In the end, the companies’ brand, once perceived as environment friendly, will increase its market value.

—-

Hougland, B., 2014. What Is The Internet Of Things? And Why Should You Care? | Benson Hougland | Tedxtemecula. Available at <https://www.youtube.com/watch?v=_AlcRoqS65E> [Accessed 11 October 2020].

Gabrys, J., 2016. RE-THINGIFYING THE INTERNET OF THINGS. In: N. Starosielski and J. Walker, ed., Sustainable Media: Critical Approaches to Media and Environment. Routledge.

Symanovich, S., n.d. The Future Of IoT: 10 Predictions About The Internet Of Things | Norton. [online] Us.norton.com. Available at: <https://us.norton.com/internetsecurity-iot-5-predictions-for-the-future-of-iot.html> [Accessed 11 October 2020].

Scully, P., 2018. The Top 10 IoT Segments In 2018 – Based On 1,600 Real IoT Projects – IoT Analytics. [online] Iot-analytics.com. Available at: <https://iot-analytics.com/top-10-iot-segments-2018-real-iot-projects/> [Accessed 11 October 2020].

Plastiglomerate – The molten plastic cores of the anthropocene.

Plastiglomerate sample/ready-made collected by geologist Patricia Corcoran and sculptor Kelly Jazvac at Kamilo Beach, Hawai’i, 2012. Photo: Kelly Wood. Courtesy of the artist.  | SOURCE: https://www.e-flux.com/journal/78/82878/plastiglomerate/

Plastic is the material that is probably most representative of our single-use-throw-away culture. When we considering the amount of time that we actively use plastic (as an essential part of electronic devices or as something more simple like a plastic cup) compared to the hundreds of years it takes to decompose plastic, it becomes quite evident what is fundamentally wrong with the way we consume.

In his work Technofossils of the Athnorpocene Dr. Sy Taffel, senior lecturer at Massey University in New Zealand emphasizes: ” …the urgent need for a dramatic reorientation of the material infrastructures and practices of consumption that underpin twenty-first-century digital cultures.” [1]

How much plastic is becoming part of our future geology is visible in Plastiglomerates. Plastiglomerate, a term just recently coined, refers to polymers that are combined with other materials creating fragments with much greater density. Basically it is a stone made out of a mixture of natural stuff like sand or wood that is held together by a molten and hardened plastic core.

Patricia Corcoran, Charles Moore, and Kelly Jazvac, who discovered and named Plastiglomerates present a striking reminder of the long-lasting and damaging influence of human existence on our environment and a new symbol of the Anthropocene: “…this anthropogenically influenced material has great potential to form a marker horizon of human pollution, signaling the occurrence of the informal Anthropocene epoch.” [2]

————————————
[1] Sy Taffel: Technofossile of The Anthropocene. Cultural Politics, Volume 12, Issue 3, © 2016 Duke University Press, p.358
[2] Patricia L. Corcoran, Charles J. Moore, Kelly Jazvac: An anthropogenic marker horizon in the future rock record, https://www.geosociety.org/gsatoday/archive/24/6/article/i1052-5173-24-6-4.htm

The flip side of the media

The flip side of the media

Digital media is often thought to be that environmentally friendly option. After all, it saves huge amounts of information on paper, messages sent via the Internet, remote meetings, information in the web is fast, effortless and energy-saving. However, there is a huge production process behind digital media that is by no means unproblematic.

THE ORIGIN OF MEDIA

In the soil rests the seed of digital media from which it is converted into media in its many forms, global media networks and sophisticated media equipment through mining, chemical processes and a highly refined thermal control system.

The rock is removed by blasting and drilling metals and minerals that, as a result of numerous thermological and chemical processes, reach sufficient concentration, sufficient purity to guarantee media performance, speed of networks and equipment, and a more streamlined appearance of equipment. The functionality of data transmission and cloud services are maintained by means of advanced thermal regulation. A small deviation in temperature can lead to overheating and a network crash.

On our home computers, we look forward to the connection being restored. The blackout of the screen and the interruption of communications may seem like greater adversity and personal punishment. We are accustomed to seeing effective data transfer and access as a right around which much of our lives revolve. However, little has been discussed about the geological and thermodynamic system behind and maintaining seamless data transfer or its climate or social implications.

Both the history of communication and the present have been entirely dependent on metals, of which copper and silica are the most important. Copper and silicon are part of almost all modern media. All metal is bound to the aggregate from which it must be separated. The process requires huge amounts of heat, and only a small fraction of the huge amount of aggregate is clean enough to be used for media needs. Ten kilograms of copper are obtained from a ton of aggregate. The rest of the aggregate is rock waste. Contamination is a by-product of such a process. Surplus rock material is only one part of the waste generated by the process, in addition to the chemicals used, the rock dust generated in mining, the by-products of processing and the used electronic waste. [5]

Many of the raw materials used in electronic equipment come from mines in countries where it is difficult to safeguard fundamental human rights. In the Democratic Republic of Congo, for example, mines owned by insurgents and various paramilitary forces have funded and fed wars that have killed more people than in any conflict since World War II.

Congo and its neighbouring countries account for a large proportion of the tin, tantalum, tungsten and gold used in electronic components. Without them, computers, tablets and cell phones would not work.

Larger-scale mining in particular has also led to significant environmental damage. [1]

Most of our electronic equipment are manufactured in factories whose working conditions do not meet internationally agreed minimum standards. Salaries are not enough to live on, trade unions are banned and many workers live in conditions comparable to slavery. [1]

The biggest environmental impacts of electronic equipment are energy consumption and the resulting greenhouse gas emissions, electronic waste, and the toxic chemicals and heavy metals used in the equipment.

The energy efficiency of the devices has improved but the need for energy is still on the rise as more and more energy is needed for digital media storage and data processing.

Tens of millions of tonnes of electronic waste are generated every year. From Europe, e.g. Nigeria and Ghana leave Europe with a lot of “reusable” equipment that ends up directly in a landfill. An estimated 5-13% of e-waste in the EU is exported illegally.

Electronic waste mountains are a serious environmental and health risk. Equipment often contains mercury, lead and other heavy metals, various fluorescent and flame retardants, and plastics that, if improperly handled, can contaminate soil, air, and water. In addition, many of these substances, as well as the chemicals used in e-waste treatment, are very hazardous

and health, and respiratory diseases, for example, are common among waste collectors in developing countries. Many of them are minor children. E-waste toxins can also cause a variety of birth defects, nerve damage, cancer, and many other health hazards. [1]

COPPER & CRIMES

According to Goldman Sachs, copper and nickel will be found in the soil for another 40 years. [2] The depletion of natural resources is changing the integrated culture, practices, economy, geopolitics and climate conditions of the digital age. [3] An extensive criminal network has already been built around copper. There are motorcycle gangs, individual criminals and organisations like the Italian mafia involved. Thieves, for example, can take church roofs and grounded copper cable along railways and cause considerable damage. The origin of copper is being eradicated and it is often exported to Europe, e.g. For melting in the Baltic countries or chartering e.g. To China. China is the world’s largest producer of copper, and due to China’s high demand for copper, the market price of copper has risen sharply. In Finland, thefts have taken place at construction sites and the roofs of buildings have been stolen. [4]

NUMBER OF COPPER THEFT FROM RAILWAYS IN 2010

Belgium ………… .717 cases

Germany ……… .over 1000 (Jan-Oct 2010). PRICE LABEL: 12-15 million

France ……… 300. Price tag: approx. 35 million euro

Italy …………… ..1341. PRICE LABEL: approx. 4 million euro.

Great Britain …… 2000 (2006-2010) PRICE LABEL: 42 million euro [4]

Italian anti-mafia prosecutor Aldo de Chiara specialices in environmental crimes. He has been investigating an illegal waste management business in Italy in the hands of the mafia. . The most famous and widespread case is called Operazione Nerone where criminals burned waste to get copper.

Aldo de Chiara: These people are reckless and unscrupulous because they know that the criminal activity they are doing is a danger to public health. It is therefore important to point out that burning wires does not just release substances that are harmful to health into the atmosphere, which can cause respiratory symptoms. Combustible landfills also contaminate agricultural land, causing significant damage to the environment. [4]

HEAT AND ENERGY MANAGEMENT

Heat management plays a key role throughout the media production process. The need for temperature control begins already in mining and aggregate processing. The aggregate undergoes innumerable thermological processes before it is a usable metal. A suitable temperature is essential in the manufacture of the devices. Data transfer and data archiving will not work if the temperature is not correct. The wrong temperature in the print media process causes problems with printing papers, printing plates, and printing inks. Preservation of photographs, prints, films, and paintings requires an appropriate temperature. Libraries, archives and digital storage facilities need a suitable temperature. The stock market will collapse if the digital network overheats. [5]

According to several sources, one google consumes as much electricity as a 60-watt light bulb that is on for 17 seconds. The servers are assembled into large data centres whose electricity consumption has been compared to small states, just to mention few examples of energy consumption.

The carbon footprint of digital media is an issue we need to focus on in the future.

[ 1 ]  https://eetti.fi/vastuullinentekniikka/

[ 2 ]  https://www.is.fi/taloussanomat/art-2000001870184.html

[ 3 ] https://www.sitra.fi/artikkelit/trendit-kamppailu-luonnonvaroista-kiihtyy/

[4]  Minna Knus-Galan /Punaisen kullan metsästäjät käsikirjoitus, YLE, MOT

[5] Nicole Starosielski, “Thermocultures of Geological Media,” Cultural Politics, Vol. 12 (3), Duke University Press, 2016: 293-309.

[ 6 ] https://www.karhuhelsinki.fi/blogi/internetin-ilmastouhkat-miten-kayttaa-nettia-ymparistoystavallisesti

Technosymbiosis of media, performance and plastics.

 

Performance art scene can date back to the primitive people in Paleolithic era creating sacred rituals to emulate the spirit world. It is quite burdensome to produce the exact date of birth of the performance art, as in its essence it is a pure transmission of energy between the artist and the audience at certain given time and space; it happens in present – once the piece is over, it is over forever, only the memory of it can stay. This changes, however, with the birth of media technology, in particular the first film camera.

Kodak created first film camera in the late 80s [1], the first transparent and flexible film base material was nitrocelluloid [2], which was discovered and then refined for the use in film. Now, with this first film camera the performances were possible to capture, store and document them for later use. The performance trace was no longer only in viewer’s memory, but also on a piece of paper.

 

(Photo 1: Original Kodak Camera, Serial No. 540, [3])

 

Nitrate film was used for both photographic and cinematic images from late 19th century until late 40s in 20th century [2]. During this time in performance history, quite a popular style was cabaret. With the birth of revolutionary cultural movements like DADA and Cubism, performance art started to shape its importance in the bourgeoisie fine art society. Performance art was considered and still is, nowadays, as one of the purest artistic expressions. Quite challenging to capture the time and space of a certain moment on film, yet quite revolutionary, provocative and important for the history and theory of performance art the photographs were in the beginning of 20th century.

 

Cabaret Voltaire: A night out at history's wildest nightclub - BBC Culture

(Photo 2: Cabaret Voltaire, [4])

 

However, photographs do not depict the movements, the feelings and expressions of the performer. They are just a still candid photograph of a certain time and moment in that given space. During the same era a new art form in media was born – motion pictures and the first synthetic plastic was produced and patented by Leo Baekeland in 1907 [2]. Polymers like cellulose nitrate, cellulose acetate and polyester play an important role in film history as well as in the making and documenting of the performance history. Many film rolls were used and discarded in the landfill, where most traditional plastics might not decompose.

With the creation of digital cameras in 70s and 80s the feeling of many wasteful materials discarded, like film rolls, seems to have disappeared. But is it really quite so? Inside the digital camera, there are many electronic equipments, sensors, detectors that capture the incoming rays and turn them into digital signals. Digital cameras use digital technology. “Plastics are often neglected within materialist accounts of media” as rightfully Sy Taffel said in their paper “Technofossils of the Anthropocene: Media, Geology, and Plastics. Cultural Politics” [2]. If we go beyond digital camera as a medium to document performance art, we can think of  the quite recent concept of the art of the future, for example mixed reality. Mixed reality can truly help the artist to caption their performance forever. The feeling and experience for the viewer is quite different and incomparable to viewing the performance piece, for example, in the form of photograph or a movie. In mixed reality the viewer can be present with the performer in space. It is no longer the documented trace of performance you are viewing, it is almost like a feeling that you are there together with an artist.

Performance art is art quite often without objects that happen in given space and moment. In order to be present, the viewer needs to be physical in that space. But with the help of the media the viewer can experience partially or fully the artwork. Their symbiosis is strong and it plays an enormous role in the history, theory and development of performance as an art form. The symbiosis of media and plastics might not be as visible to the naked eye, however, it is daily there in our everyday lives capturing incoming rays, detecting the change in the environment and responding with the output. We cannot talk about one without the other, thus performance, media and plastics are tied together in the technosymbiosis of anthropocene.

As a final thought, here is a small performance and entertainment to compare thermoplastics and thermoset plastics.

 

(Video 1: Comparison of plastics in digital media 1, thermoplastics examples, by the author)

 

(Video 2: Comparison of plastics in digital media 2, thermoset plastics examples, by the author)

 

References:

[1] Ma, Jonathan. (2017). Film Photography History and Emergence of Digital Cameras. https://sleeklens.com/the-history-of-film-and-emergence-of-digital-cameras/ [Accessed 4 October 2020]

[2] Taffel, Sy. (2016). Technofossils of the Anthropocene: Media, Geology, and Plastics. Cultural Politics. 12. 355-375. 10.1215/17432197-3648906

[3] National Museum of American History. Original Kodak Camera, Serial No. 540. https://americanhistory.si.edu/collections/search/object/nmah_760118 [Accessed 5 October 2020]

[4] Sooke, Alastair. (2016). Cabaret Voltaire: A Night out at History’s Wildest Nightclub. https://www.bbc.com/culture/article/20160719-cabaret-voltaire-a-night-out-at-historys-wildest-nightclub [Accessed 5 October 2020]

 

 

A cycle of plastic karma?

Today, we find plastic in almost everything, in our clothes, computers, phones, furniture, appliances, houses, and vehicles. Synthetic polymers are lightweight, durable, and can be molded in almost any shape. Some usage examples are Bakelite for mechanical parts, PVC for plumbing, electric gears and cases, nylon for packaging, and so on. Since synthetic polymers are durable, plastic takes 500-1000 years to break down. Hence, they often end up in landfills and oceans. More than 8.3 billion tons of plastic waste enter the oceans each year, according to a report by the World Economic Forum [1]. A study suggests that by 2050 there will be more plastic than fish in the ocean.

Concentrations of plastic debris in the world’s surface waters. Credit: Cozar et. al. 

A cycle of plastic karma? Any plastic that is smaller than 5mm can be considered “Microplastic”. Microplastics mainly come from plastic exposed to UV in the ocean and deteriorate into small pieces, then are swallowed by marine species. Following the food chain, microplastic ends up in fishes, shrimps, crabs, and into our bodies. There are at least 269,000 tons floating in the ocean according to a study by 5 Gyres Institute. Microplastics have been found in food and water that humans consume on a daily basis. Although we need more research before panicking, a sagacious person would not be blithe about the possibility of a cycle of plastic karma to future generations. 

In his paper “Technofossils of the Anthropocene”, Taffel asks a key question:

“The key question is not if, but how, we arrive at collective decisions to attempt the rewilding, dispersion, protection, conservation, thinning, or removal of particular types of living and nonliving entities from specific ecosystems, while recognizing that the dynamism of ecological systems means that any certitude surrounding the deep-time impact of such actions is illusory.”

To elaborate on this question, I propose a specific approach: “How might we separate, prevent, remove plastic from the oceans, thus saving marine and human lives?”

—-

Reference:

Taffel, Sy. (2016). Technofossils of the Anthropocene: Media, Geology, and Plastics. Cultural Politics. 12. 355-375. 10.1215/17432197-3648906. 

Ballerini, Tosca & Pen, Jean-Ronan & Andrady, Anthony & Cole, Matthew & Galgani, François & Kedzierski, Mikaël & Pedrotti, Maria Luiza & ter halle, Alexandra & van Arkel, Kim & Zettler, Erik & Amaral-Zettler, Linda & Bruzaud, Stéphane & Brandon, Jennifer & Durand, Gael & Enevoldsen, Enrik & Eriksen, Marcus & Fabre, Pascale & Fossi, Maria-Christina & Frère, Laura & Wong-Wah-Chung, Pascal. (2018). Plastic pollution in the ocean: what we know and what we don’t know about. 10.13140/RG.2.2.36720.92160. 

Www3.weforum.org. 2020. [online] Available at: <http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf> [Accessed 3 October 2020].


Further Readings:

David Barnes, “Biodiversity: Invasions by Marine Life on Plastic Debris.” Nature, 6883.1 (2002): 808-809. Print.

Derraik, Jose G. “The pollution of the marine environment by plastic debris: a review.” Marine Pollution Bulletin, 44.1 (2002): 842 – 852. Print.

Planned Obsolescence and the Lifespan of Electronics

Back in the 1920s the US automotive industry were faced with a problem. An industry which had long enjoyed explosive growth was now faced with falling numbers. It had taken less than twenty years, after the launch of Ford Model T in 1908, for car ownership to go from a luxury to an assumption. But now the market was hitting a saturation point: most everyone who wanted a car already had one.

As a solution to this, the head of General Motors Alfred P. Sloan Jr. suggested annual design changes to convince buyers that they needed to buy a new car even if the old one still worked fine. The strategy, which he’d borrowed from the bicycle manufacturers, was quickly branded as “planned obsolescence” by critics, though Sloan preferred the term “dynamic obsolescence”. Planned obsolescence has had far reaching consequences not only on the automotive industry, but on the whole field of product design and thus on all the market economies of the world. A shining example of this is modern electronics.

A recent report on ‘electronics and obsolescence in a circular economy’ from the EEA’s European Topic Centre on Waste and Materials in a Green Economy gives us good insights on this issue in the European context and its affects on the environment.

The report states that consumption of electronics has grown steadily over the past decades, mainly driven by information technology, namely smartphones. Today an average of 20 kg of electronics per EU citizen is put on the market every year. Much of this growth in demand can be attributed to falling costs of production: “purchasing a new washing machine, for example, cost 59 working hours work in 2004 but dropped to just 39 hours in 2014 (CECED, 2017)”.  Once discarded only around half of these electronics enter official recycling systems, leaving large amounts untreated. One of the main findings of the report is that the average real lifetime of products is at least 2.3 years shorter than the designers of the products estimate them to be.

Source: ETC/WMGE based on Cordella et al., 2019 and Wieser et al., 2015 for smartphones; Kalyani et al., 2017, King County, 2008 and Wieser et al., 2015 for televisions; Wieser et al., 2015 for washing machines; Rames et al., 2019, EC, 2019 and Wieser et al., 2015 for vacuum cleaners)

The report recommends the EU to pursue policies which enable and encourage circular business models which would extend the lifespans and delay obsolescence of electronics.

 

References

1. Europes consumption in a circular economy: the benefits of longer-lasting electronics https://www.eea.europa.eu/themes/waste/resource-efficiency/benefits-of-longer-lasting-electronics

Cancer Villages in Vietnam

Cancer village is the word used in Vietnamese to refer to villages in Vietnam, where many people have cancer because of water pollution. According to the Ministry of Health, as of 2007, there are about 51 villages and communes scattered in 25 provinces/cities nationwide recorded as “cancer villages”. Focusing mainly in the North and Central – where high-intensity handicraft and craft village activities take place (Ha Tay, Bac Ninh, Nam Dinh), near old industrial zones (such as Thai Nguyen, Phu Tho) or near old plant protection warehouses (Nghe An, Ha Tinh) … [1]

Water sources in cancer villages in Vietnam according to the investigation are polluted by pesticides at drug stores, war poisons, graveyards, craft villages, domestic and industrial wastes, and public works. The analysis results of water samples being used for drinking in the “cancer villages” show that most of them are contaminated with microorganisms, some samples have Content of phenol, arsenic or manganese exceeds the permissible standard many times. 

The people of Thong Nhat village (Hanoi) mainly use water from drilled wells.

Image: Contaminated Nhue River (Hanoi, Vietnam) [2]


Case Thach Son Cancer village: The village is contaminated, in both air and water. According to a survey by the Ministry of Natural Resources, the atmosphere here is seriously poisoned by industrial emissions, especially in the area around Lam Thao Supe phosphate factories, Phu Tho battery factory. Besides, the breathing air in Thach Son must receive smoke from 90 brick kilns and the bad smell at the outlet of the wastewater of the Bai Bang paper factory to the Red River. Regarding water sources, both surface water and groundwater in Thach Son are toxic. All lakes and wells are polluted. [3]

From 1991 to 2009, Thach Son commune had 106 people died of cancer, most commonly cancer of the liver, lung, stomach, throat. 19 families with at least 2 people die from this disease (husband and wife, or father and daughter, mother and child), of which more than 3 people have died from cancer. In the Mom Den area, 15 years ago, 200 households had moved to another place by themselves because they could not stand the heavily polluted air from the Lam Thao Supe Phosphate factory. 70% of these families have died of cancer. [4]

— 

I would like to propose three levels of responsibility: Change starts from a systemic level to corporate responsibility and consumerism. The government has the power to gives permission for fabrications’ manufacturing activities on their homeland, hence, takes major responsibility for environmental and social impacts. Corporations must make ethical decisions that impact both the environment and humans. Consumers contribute to the scene by being mindful of everyday consumption, raising environmental concerns, and pushing for systemic changes.


Three levels of responsibility

References:

[1] https://nongnghiep.vn/viet-nam-co-51-lang-ung-thu-d5069.html Nong Nghiep VN. Accessed Sept 28th, 2020.

[2] Image: http://suckhoenguoiviet.org/danh-sach-10-lang-ung-thu-o-viet-nam.html Suc khoe nguoi Viet. Accessed Sept 28th, 2020.

[3] https://vnexpress.net/lang-ung-thu-thach-son-tu-dat-den-troi-deu-doc-2261643.html Vnexpress, accessed Sept 28th, 2020.

[4] https://www.vietnamplus.vn/noi-dau-dai-dang-o-lang-ung-thu-thach-son/21061.vnp Vietnam Plus. Accessed Sept 28th, 2020.

 

I live in the land of a thousand lakes but not a single one of them is like Baotou lake in Inner Mongolia, China.

I have taken hundreds of images of the beautiful lake next to our summer cottage. Most often I’ve photographed it with my smart phone made of aluminium, carbon, oxygen, iron, silicon, copper, cobalt, hydrogen, chrome, nickel and 4.9 grams of other materials like gold, tin and zinc.[1][2] It is a small lake with good water quality. There are no fields nearby that would lay down fertilizers to the streams connected to the lake nor are there any mines nearby that could pollute the small lake in a blink of an eye. There’s just the awesome calmness of the forest, a pair of swans and a family of black-throated loons swimming on the lake and me with my smart phone, the end product of all the mining happening somewhere far away from this paradise.

The technology we nowadays use to work, to participate in social media and to consume entertainment looks shiny, pure and clean. Smooth parts made of glass, aluminium and chrome feel and look good and are actively trying to make us forget where they really come from. Designed in California, Assembled in China but mined where and at what expense?

When buying an iPhone we pay around 1000 dollars for it. The materials of an iPhone are calculated to be worth a bit over 1 dollar.[1] Then with the remaining 999 dollars we probably cover the assembling, design, software, logistics, sales and of course the profit for the huge corporation behind it all. That is a lot of money for an average consumer but you might still wonder who in the end pays the biggest price?

Have a look at this awesome sunset at the lake next to our summer cottage that I photographed with 1000 dollars less on my bank account than before buying the smart phone I took this with!

Then have a look at this video by BBC journalist Tim Maughan from the Baotou lake.

“You may not have heard of Baotou, but the mines and factories here help to keep our modern lives ticking. It is one of the world’s biggest suppliers of “rare earth” minerals. These elements can be found in everything from magnets in wind turbines and electric car motors, to the electronic guts of smartphones and flatscreen TVs. In 2009 China produced 95% of the world’s supply of these elements, and it’s estimated that the Bayan Obo mines just north of Baotou contain 70% of the world’s reserves.”[3]

So who after all is paying the biggest price for sustaining this technology filled modern life? And who collects the profit? Answer to one these questions lies in Baotou. Which one? That should be as obvious as is the whole content of this text. We all know this stuff, we are just so skilled in ignoring unpleasant facts as long as they don’t pollute our own lakes.

Finland does not yet have a toxic lake such as Baotou, the scale is luckily smaller, but already during the last 10 years people living or owning summer houses in Sotkamo, on the shores of the lakes near Talvivaara mine, have suffered from the mining company’s polluting. On 2014 the Supreme Administrative Court of Finland gave a statement that Talvivaara Sotkamo Oy has not been able to obey the rules given in their environmental permit during its whole time of existence. This has changed the way many people in Finland see the mining business and its negative effects on the environment. These mines create jobs but with too extreme consequences for the environment the positive effects get nullified in people’s minds.[4]

This way of thinking seems to work locally inside the Finnish borders but in a way this environmentalism has some nationalistic features. It is still “our lakes” that we are talking about here and even if we quit mining any materials from Finland, we don’t have to quit living the modern life with all the technology. There isn’t that big compromise we have to make. But even though we have seen what mines like Talvivaara can do to our nature I don’t see people wishing to stop this kind of environmentally hazardous mining everywhere outside our borders that strongly because that would have a lot more effects on our comfortable digital lives. And here I am too, using all these devices built from the materials digged from Baotou and contributing to the toxicity of the lake there. But is it individuals who have created this destructive system by wanting to buy new technology with cheaper and cheaper prices? That is how the corporations probably wan’t us to feel about it, but I would point my blaming finger more towards them instead.

References

  1. https://www.statista.com/chart/10719/materials-used-in-iphone-6/
  2. https://www.vice.com/en_us/article/433wyq/everything-thats-inside-your-iphone?ex_cid=SigDig 
  3. https://www.bbc.com/future/article/20150402-the-worst-place-on-earth
  4. https://www.apu.fi/artikkelit/talvivaara-pilatut-jarvivedet-nostivat-ymparistonsuojelun-koko-kansan-puheenaiheeksi-nain-kaikki-tapahtui (In Finnish)

Circuits of Capital

A system of high-risk, low-paid work in offshore factories, where human and environmental rights are casually ignored is an essential part of the global success story of electronic companies, the automobile, and the fashion industry, among others. [1]

The fact that components for virtually all technological products are manufactured in different locations around the globe is disconnecting us from the reality of human and environmental suffering. This system allows companies to distance themselves from the supply chains they’ve build-up themself. Transparency is claimed impossible and responsibilities are conveniently shifted.
“lt is clear, however, that corporations resist taking responsibility, spending instead vast sums on legal actions blocking charges against them and on public relations campaigns (including the expensive scientists whose reports they commission).”  [2]

Some companies even have the audacity to claim that it wouldn’t be possible for them to demand their suppliers to comply with human rights. This system allows us to maintain our privileged, wasteful, and unsustainable lifestyle without realizing that this way of living is supporting child-labor (e.g. in fashion production) [3] , modern slavery as seen in the fish industry in Thailand [4], and the brutal suppression of minorities supported (e.g. by VW in China. [5]

In what world do we live in where companies feel like human-rights are negotiable?

Among the things that really stayed with me in Sean Cubitt’s Ecologies Fabrication is that when you fight for the environment you also have to fight for human rights: “Environmentalists need to expand their political horizons to include human victims of anti-ecological practices, (…) these include not only workers and those living in the immediate vicinity, but everyone involved in the circuits of neoliberal capital.” [6]


[1] Sean Cubitt, “Ecologies of Fabrication,” in Sustainable Media: Critical Approaches to Media and Environment, eds. Nicole Starosielski and Janet Walker, NY and London, Routledge, 2016: p.168
[2] ibid 173
[3] https://www.commonobjective.co/article/child-labour-in-the-fashion-industry
[4] https://www.theguardian.com/world/2019/sep/21/such-brutality-tricked-into-slavery-in-the-thai-fishing-industry
[5] https://www.sueddeutsche.de/politik/menschenrechte-ueruemqi-vw-haelt-an-werk-in-chinesischer-provinz-xinjiang-fest-dpa.urn-newsml-dpa-com-20090101-200108-99-391133
[6] Sean Cubitt 2016, p. 164

 

 

On the borderline

Standing in the borderline of land and the water with salt water splashing on my face, the words that were discussed during the first Media&Environment -lecture are echoing in my head: ”THERE IS NO NATURE.” There is no nature because everything is mediated -ocean, forest, nature is mediated.  To me who love the sea and feel like home in the forest  it´s quite a provocative line. But what is the behind the line?

In 2000, Nobel Laureate in Chemistry Paul Crutzen noted that the Earth has moved into a new geological era, the anthropocene, or human time. In 2016, naturalists defined the starting point of anthropocene as 1950, when the effects of nuclear experiments are visible in the soil. the beginning of the anthropocene era depends on who is asked. If it is considered to have started in the 1950s, the effects of industrialisation on the environment are ignored. From human kinds impact to the planet there`s no turning back. The footprint of humankind on the planet is far smaller compared to the impact of Ice Eras or asteroids. 

Jussi Parikka is describing the current state of Anthropocene: ´The anthrobscene, referring to the obscenities of the ecocrises.  [1] The impact of humankind is divided into five categories: climate change, mass extinctions, ecosystem loss, pollution, and population growth and overconsumption.

There is no such thing as wild nature. Pollution – including marine plastic waste rafts, microplastic particles, the deposition of composites in the soil and changes in the atmosphere – extends to the point where man does not physically reach himself. Wildlife makes up only three percent of the planet’s megafauna biomass. Everything else is people and cattle.  The wireless network is present almost everywhere, internet cables and gas pipes slice through the seabed,  the atmosphere is full of harmful small particles and microfibers are everywhere; natural resources are used ruthlessly all over the planet.  If the latest geological strata of the country were ever studied, the bones of production animals — broilers, cattle, pigs — would be found en masse among concrete, asphalt, glass, and plastics.

Historian Tero Toivanen points out that: ´Wild nature  exists only in advertisements where the car is sold with the impression that the car enters the wild nature.´ [2].

Reference

[1] The Anthrobscene Jussi Parikka University of Minnesota Press Minneapolis

[2]  Kansanuutiset, Villiä luontoa ei enää ole, Tero Toivanen, interview Katri Simonen

Demand of raw materials in advanced technologies

In her paper “Thermocultures” Nicole Starosielski [1] talks about raw materials needed for media technologies. In order to grasp and understand the paper deeper, I tried to give my own version of the meaning what the compound term “thermocultures” could be. Prefix “thermo” corresponds to something relating to heat, whether “cultures”, in this instance, could correspond the the social behaviour and customs of society.

“Thermocultures” paper gave quite a big overview of how we are treating and transforming the earth’s raw materials currently. “For each ton of ore removed, only ten pounds of pure copper will be produced”. So when the valuable materials are produced, what becomes with the rest of excavated materials. Do they become waste? And where does this culture of pure materials originally come from?

In Cecilia Jamasmie paper “Copper supply crunch earlier than predicted – experts” [2] mentions that “increased consumption from new technologies, including electric vehicles, will drive demand for the metal and its by-products” and that sooner or later the deficit of copper will become visible and evident, as the demand is becoming higher. Copper is one of the main metal of transition and it is an essential component in electronic product manufacture, it is also one of the best electrical conductors. In Cecilia Jamasmie paper [2] a very fascinating chart was presented about the supply gap of copper:

Copper supply crunch earlier than predicted — experts

Without a doubt, raw materials play an important role to the success of the economy of the country and society, however, raw materials could soon be in short supply, as a direct result of them being in high demand. Perhaps, the purification process needs to be re-thought and certain predictions are required to be understood, which raw materials are needed for resource-sensitive future technologies.

[1] Starosielski, N., 2016. Thermocultures of Geological Media. Cultural Politics, 12(3), pp.293-309.

[2] Jamasmie, Cecilia, 2018. Copper supply crunch earlier than predicted – experts. https://www.mining.com/copper-supply-crunch-earlier-predicted-experts/ (Accessed: 20 September 2020)

Thoughts and trembling while reading Thermocultures of Geological Media by Niclole Starosielski

Media runs on perfection. One of those perfect pillars needed for communication and power transmission is copper. After copper sulfide is mined, crushed and grinded a compound containing 25% copper is left. Useless in the eyes of technology. Only after heavy treatment with thermal techniques a 99% copper substance will remain. Still pathetic in the realm of purity. Another stage of electrolytic refining is needed to generate 99.99 % pure copper. Perfection at last. All that was needed for the blessing of ten pounds of pure copper is the vanity of a single ton of ore and a trail of pollution guarding every step of the way.

The purity that is needed for technology to function is both fascinating and scary. But in this ever-changing world perfection is never lasting. Humankind doesn’t run on perfection, we strive on defects and diversity just like every ecosystem we so desperately try to destroy.

J.M. Barrie, the author of Peter Pan, once wrote: “You can have anything in life if you will sacrifice everything else for it.” When we look at such a feeble and imperfect species such as ourself, the desire for purity is understandable. I just don’t think it’s worth everything.

Computation Under Uncertainty

Nicole Starosielski’s text “Thermocultures of Geological Media” [1] talks about a “culture of purity”, where our cultural imperatives have resulted in us choosing to only use pure metals and other materials in our electronics. Her main critique of this is that the purification process of metals such as copper and quartz is very energy intensive, and that developing technologies which would utilize metals of a lesser purity would result in media with a lower environmental impact. She also says that this kind of technologies, which probably would have to compromise speed and accuracy, would “…significantly alter the form of existing media texts and technologies”. I find the idea interesting but at the same time I finding it very difficult imagining how computation would work in such an inaccurate system seeped with uncertainty.

Our current models of computation rely heavily on reproducibility and stability: bits will not flip randomly (except in extreme cases) and code will always be executed in the same way. Given the same inputs, a set of commands will always result in the same outputs. Introducing uncertainty into this system would not only cause “subtle variations across media objects”, but result in bugs, crashes, corruption and loss of data. Maybe some new computational models could be developed which could better deal with randomness (quantum computation comes to mind), but currently one of our only methods of dealing with uncertainty in computation is by verifying the validity of data and performing recalculations as needed. Already a small amount of uncertainty could cause huge numbers of unnecessary CPU cycles, which across the millions of computers in use today might very well negate any environmental benefits gained from the use of impure metals. And with a high enough level of randomness, even these methods would no longer work and the system would come crashing down under the pressures of uncertainty.

The word “uncertainty” has a negative connotations, even though it is non-partial in the quality of the future it describes. Uncertain events might as well lead to unexpected successes as to devastating failure, but our negativity bias makes us focus and lay greater importance to the latter and makes us uncomfortable in situations where we have too little control of the future. Seen through this lens, the strive to control our future is a very natural trait. In fact, I believe one way to look at the evolution of organisms is as a struggle for control over uncertainty. Existence is an extremely complex system which humans and animals alike have evolved to navigate as best they can in the fight for survival. Excessive uncontrolled futures results in accidents, broken bones, death and the extinction of species.

Ultimately, I enjoyed this thermal perspective on media that Starosielski’s text gave, but question the validity of her thoughts on purity of metals and the possibility of moving away from them in our electronics.

1. Starosielski, Nicole. Thermocultures of Geological Media. Cultural Politics (2016) 12 (3): 293–309.

Terminology in the Anthropocene

The world feels overwhelming at times.

We relate everything to everything and problematize without limit. Murder and theft of land can through Adam Smith’s invisible hand, global trade networks and under sea cables be traced to me not recycling thoroughly enough. Not to say that we shouldn’t see the truth of this, just that it’s exhausting. The world is so complex. There is always another angle to everything, always new terminology to comprehend. There are no Simple Truths™.

In the spirit of this mood, while reading Jussi Parikka’s The Anthrobscene [1], I wondered what the point of coining new terminology is. Specifically, why do we need a term like “the anthopocene”, or any of its’ contenders like Parikka’s “anthrobscene”?

While looking for answers to this question I found an interview [2] of Erle Ellis, an environmental scientist who is a part of the Anthropocene Working Group. In the interview he explained his stance on why formally defining and accepting the term is important:
What’s at stake here, outside the domains of geology and stratigraphy, is a new story of human social relations with Earth. The Anthropocene changes the story from one in which human and natural history play out in separate theaters, to one in which humans shape Earth’s past, present and future. In the Anthropocene, it really matters what humans do to Earth. By placing humanity firmly in the role of an Earth-changing force, with all of its complexities, the Anthropocene demands answers to some hard questions – what are we doing with Earth? Are we doing the right things? What can we do better? And the most challenging question of all: Who is or are “we”?

This is the explanation I’d been looking for. Obviously it doesn’t give me any simple truths, but it seems like a good enough reason to add another complex term into this already complex world.

1. Parikka, Jussi. The Anthrobscene. University of Minnesota Press, 2014.
2. futureearth.org: Why efforts to define the Anthropocene must be more inclusive and transparent

Not Seeing

The idea behind Jussi Parikka’s essay The Anthrobscene is a natural continuation of the overall obscenity of human beings. Parikka’s comment, “To call it “anthrobscene” is just to emphasize what we knew but perhaps shied away from acting on: a horrific human-caused drive toward a sixth mass extinction of species”,[1] made me think of the general discussions about climate change and how immediately seeing (or in this case especially not seeing) the consequences of one’s actions affects the behaviour.

Piling up all the space junk we as humankind have left to float around space on your own yard could help give some perspective. Also making your important calls with your smart phone while looking out from your window and seeing for example all the miners (possibly children) working to provide the materials for your devices could help in at least not taking everything for granted. Maybe you could ask Siri, Alexa or who/whatever to play some music from Spotify on the yard too to keep the workers entertained?

This quote also reminded me of one example where even seeing the truth wasn’t enough. People seem to be pretty nostalgic and driven by their feelings when it comes to their own living environment. While doing my photography BA thesis work in 2015 I ran into Ton Lemaire’s philosophical writings of landscape and through him also a research from 1980’s France conducted by DATAR, the Delegation for Planning and Regional Action, where the participants were asked about the landscapes of their living environments.

Cultural anthropologist Ton Lemaire wrote about the 20th century urbanisation and its affects to landscape and how in 1970’s and 80’s people were already aware and discussing about the “environmental crisis” and the spreading of urban infrastructure but despite of that the answers DATAR got for its survey were far from the truth. People seemed to ignore the growing urbanism around them and were describing (very natural) landscapes that no longer really existed around them.[2] Those visual ideas of natural landscapes had not exited people’s minds even though the world around them had changed. If the urban infrastructure didn’t match the dream image of the living environment, its existence seemed to be surprisingly easy to just forget. 

From the human rights perspective I could easily claim that urbanism in the form of motorways, bus stops, apartment buildings etc. is a lot smaller problem and source of anxiety than the non-human working conditions that many people are forced to cope with in their daily lives. But for most of the westerners enjoying the global infrastructure built with human right violations the latter one is nearly invisible. And if the visible urban landscape was so easy to crop out from people’s thoughts, how easy is it with something nearly invisible? 

Not seeing, just feeling whatever we want to, ignoring the truth, re-imagining the natural, forgetting the work done for us by so many others are all too easily done. How to make it harder? That should be asked more often and hopefully somehow answered too.

 

1. Parikka, Jussi. The Anthrobscene. University of Minnesota Press, 2014.

2. Druckrey T., Gierstberg F., de Graaf J., Lemaire T. & Vroege B. Wasteland: Landscape From Now On. Haag: Fotografie Biennale Rotterdam & Uitgeverij 010 Publishers, 1992.

The Anthrobscene

The beginning of Anthropocene epoch could date back as far as the beginning of the agricultural revolution to as recent as the start of the big technology development in the 1960s. It is connected with the effects of humans on the well being of our planet/the environment and they are getting more and more evident as years pass by.

Back in the 18th century, in the era of colonialism, the raw/unspoiled nature was seen as something that needs improvement, something that doesn’t contribute to the enhancement of our daily lives. Humans fanatically tried to redesign the environment to give it a different, unnatural purpose. Hence began the irreversible influence of mankind on the environment or the era of mankind.

As time passed the increasing numbers of the human population, the advance in technology and the needs of the consumers started to affect the environment and nature more and more heavily. We developed from society needing a pretty restricted list of materials (“wood, brick, iron, copper, gold, silver, and a few plastics”) into a society in which a computer chip is composed of “60 different elements.” [1]

The excavation of those materials presents a great danger to our planet, especially because we need to “dig deeper and deeper” to obtain the desired elements that are slowly running out. The discarded waste and scrap metals from the production of multimedia devices or the discarded devices that are ready for the afterlife are piling up because most of them are either not being recycled or not recyclable at all. That presents an even bigger threat to the environment than the process of obtaining the elements.

In my opinion, the biggest issue is the human’s tendency to adapt and avoid the problem instead of tackling it and changing the way we live to resolve the issue before it starts to haunt us. Technology spoiled us and in a way we keep on playing Russian roulette with our planet. We refuse to be the losers of the climate change issue, but many are just postponing the solutions, passing the problem on to the next generation. But where does it end? Are we able to go back and step out of the luxury of modernisation? Is there enough desire to change things for the better?

In conclusion, the media technologies present a big threat to our planet; consequently to humanity. Our ways of consumption will have to change to efficiently extend the life span of our planet. Instead of doing our best to find a different inhabitable planet, we should focus on preserving this one.

References:

1. Jussi Parikka, “The Anthrobscene”, University of Minnesota, 2015

2. Anthropocene: The Human Epoch, documentary, Canada, 2018

3. Sophie Yeo, 2016, “Anthropocene: The journey to a new geological epoch”, viewed 11 September 2020, https://www.carbonbrief.org/anthropocene-journey-to-new-geological-epoch

Anthrobscene and the Neocolonial

The author of Anthrobscene mentions China as an essential part of the global chains of production and abandonment of media technologies and gives multiple examples. In my opinion, using China as an example is not only because China is a typical country that exists in the Anthropocene, but also due to neocolonial issues caused by Anthrobscene.

Anthropocene, was first defined as relating to the current geological period, also denoting the age in which human activity has been the dominant influence on climate and the environment. While Anthropocene, is marked by the human ability to move vast quantities of geologic material. Anthrobscene, is another name to describe Anthropocene, but emphasize its obscene part. As Peter mentioned, the environment is always related to media studies. Anthrobscene relates to Issues of energy, which are caused by heavy reliance on polluting forms of nonrenewable energy production and through the various chemicals, metals, media cultural aftereffects of the geological strata.

To conclude how china contributes Anthrobscene is rather easy: China itself lacks raw materials to support industrial development, so importing scrap metals is inevitable. To support the infrastructure of modernizing society, China becomes the largest scrap importer of recycled metal, although the profit margin is less than 1%. However, China has a new restriction policy about reducing the import of scrap metal. Given is a line graph that shows the trend of The recovery of waste nonferrous metals in china between 2014-2018. It is obvious that the quantity of recycling has increased, even reach 111 million tons in 2018. Nevertheless, the trend of import scrap metal has decreased by 36%.

It comes to the worry of neocolonialism: Instead of the previous colonial methods of direct military control, developed countries now use economics and conditional aid to influence a developing country. Shipping their electronic waste to developing countries can be regarded as an example. If not China, there must be some other countries or some other area to pay for electronic garbage.

 

Reference:

https://www.spglobal.com/platts/en/market-insights/latest-news/metals/070920-china-boosts-metal-scrap-imports-after-policy-change-bir

https://www.theatlantic.com/china/archive/2013/11/how-china-profits-from-our-junk/281044/

https://www.metalsinfo.com/news/display_pid_9-cid_18-news_id_216082.html

Infragraphy Volume III – Spring 2020

Graphic Design: Ameya Chikramane

DOWNLOAD PDF: http://blogs.aalto.fi/mediainfrastructures/files/2020/05/Infragraphies_vol3_web.pdf

CONTRIBUTORS: Ameya Chikramane, Boeun Kim, Lassi Häkkinen, Samir Bhowmik and Shambhavi Singh

INTRODUCTION
The world moved online in 2020. The global spread of the coronavirus COVID-19 with the resulting quarantine and lockdowns forced a significant portion of humanity to accept a virtual life. Global Internet traffic soared to over 30 percent in March and online transactions to over 42 percent in April [1]. The internet has done well during the coronavirus pandemic. Its infrastructure has held up. It allowed a transition to remote work, learning, socializing and entertainment. Netflix, the video streaming service added more than 16 million new subscribers [2], and online shopping giant Amazon hired 100000 workers in March, and reported massive earnings [3]. In between streaming and online shopping, the perfect combination of the so-called late capitalism, one thing remains unconsidered. At what cost? What is the impact of such rampant connectivity and consumerism to our society, to our environment? It is a big mistake to think we will be saving the environment by lockdowns, when all we have been doing for the past few months is streaming and shopping. Connectivity is material and resource-based, supported by a global infrastructure of data centers, power plants and submarine cables. The internet consumes energy. A whole lot of it. Global data centers recently consumed around 205 billion kWh [4]. As the massive pressure on the ‘Cloud’ intensifies and energy use goes through the roof, we need to again re-consider how we design and implement such infrastructure, or change how we live.

This third volume of Infragraphy is short but rich in its range and contents addressing internet  infrastructures. Boeun Kim’s ‘The Paradox of Online Society’ attempts to unbox the hidden cost behind the digital transition by discussing how the quarantine affects the socially disadvantaged, the energy cost and air pollution, and the silver lining during the pandemic. Lassi Häkkinen’s ‘Vulnerability of Technology and Data in the Physical World’ looks at physical world vulnerabilities of our information and data, and the impossibility to separate infrastructural materialities from the the digital. By illustration, Shambhavi Singh examines the ‘Infrastructures of Isolation’, and finally, Ameya Chikramane explores new approaches to the post-digital. All these critical student texts and artworks deal with the materialities of media technologies and their societal and environmental implications, as outcomes of the course ‘Archaeology of Media Infrastructures’ in the Spring of 2020 at the Department of Media, Aalto University. 

Samir Bhowmik
25 May 2020, Helsinki

1 Yevgeniy Sverdlik, Will the Coronavirus Break the Internet? Datacenter Knowledge, 13 March 2020 <https://www.datacenterknowledge.com/uptime/will-coronavirus-break-internet-highly-unlikely-says-cloudflare>

2 Trefis Team, Netflix Subscriber Growth 2x Expectations; Good News Or Peak? Forbes, 28 April, 2020 <https://www.forbes.com/sites/greatspeculations/2020/04/28/netflix-subscriber-growth-2x-expectations-good-news-or-peak/#5d046ad53ea1>

3 Alina Seyukh, Amazon To Hire 100,000 Workers To Meet ‘Surge In Demand’, NPR, 16 March 2020 <https://www.npr.org/2020/03/16/816704442/amazon-to-hire-100-000-workers-to-meet-surge-in-demand?t=1590396613400>

4 How Much Energy Do Data Centers Really Use? Energy & Innovation, 17 March 2020 <https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/>

Clouds or Grids?

The Internet Cloud seems like a palatable, abstract concept that somehow holds data, or bits, much like how real clouds hold molecules of water. The clouds then precipitate data to our devices, pretty much the same way that real clouds precipitate rain.

In the early 1990s, Ian Foster and Carl Kesselman came up with a new concept of “The Grid”. The analogy used was of the electricity grid where users could plug into the grid and use a metered utility service. If companies don’t have their own power stations, but rather access a third party electricity supply, why can’t the same apply to computing resources? Plug into a grid of computers and pay for what you use.

One of the first milestones for cloud computing was the arrival of Salesforce.com in 1999, which pioneered the concept of delivering enterprise applications via a simple website. The services firm paved a way for both specialist and mainstream software firms to deliver applications over the internet.

The next development was Amazon Web Services in 2002, which provided a suite of cloud-based services including storage, computation and even human intelligence through the Amazon Mechanical Turk.

According to Rebecca J. Rosen’s article Clouds: The Most Useful Metaphor of All Time?” . . . when engineers would map out all the various components of their networks, but then loosely sketch the unknown networks (like the Internet) theirs was hooked into. What does a rough blob of undefined nodes look like? A cloud. And, helpfully, clouds are something that takes little skill to draw. It’s a squiggly line formed into a rough ellipse. Over time, clouds were adopted as the stand-in image for the part of a computer or telephone network outside one’s own.”

Clouds get traction as a metaphor because they are shape-shifters, literally. As a result, they can stand in for many varied cultural tropes. Want something to represent the one thing marring your otherwise perfect situation? Done. Want to evoke the nostalgic feeling of childhood games of the imagination? Done. Maybe you want to draw a picture of heaven? You’re in luck. Clouds as metaphors pepper our language: every cloud has a silver lining, I’m on cloud nine, his head is in the clouds, there are dark clouds on the horizon. Clouds are the lazy man’s metaphor, a one-image-fits-all solution for your metaphor needs.

So there is a shift, not only in terminology but also in perception. The problem with using the word “Cloud” is that it is perceived as a harmless, abstract repository that effectively hides massive physical infrastructures and the associated thermo-cultures, energy expenses, and waste management practices. The materiality and physicality of cloud systems are manifested in the form of data centers that eat up to 200 terawatt-hours (TWh) each year. Further aggravating this trend is the fact that these data centers actually utilize only 6-12% of the total power consumption, the rest being reserved for traffic surges, crashes and redundancy ie. to make services faster, reduce errors and improve consistency.

Considering these points, one has to wonder what would today’s energy and data consumption scenario looks like if we had stuck to the term ‘Grid’ to denote modern data storage and distribution.

Ameya Chikramane, 4.3.2020

Archaeology of Media Infrastructures – Spring 2020

Course Summary: The course provides a framework of archaeological exploration of media infrastructures. It allows students to think beyond a single media device and design for broader media ecologies. Tracing the emergence of contemporary media infrastructures from early instances in human and media history, it examines both hard infrastructure (architecture, mechanical and computing systems) and soft infrastructure (software, APIs and operating systems). What are the breaks, the discontinuities and ruptures in media-infrastructural history? What has been remediated, in what form, in what characteristics? The course prepares students for the follow-up course: ‘Media and the Environment’ in Fall 2020.

Wednesdays 13.15 – 15.00 / Starting 5.2.2020 / until 1.4.2020

The course is filed under Media Art and Culture / https://into.aalto.fi/display/enmlab/2020-2022+Advanced+studies

Register: weboodi.aalto.fi  

Infragraphy Volume 2, Fall 2019

INFRAGRAPHY Volume 2. is a compilation of critical student artworks and short essays dealing with the materialities of media technologies and their environmental implications.

These works and texts are the outcomes from the course ‘Media and the Environment’ in the Fall of 2019 at the Department of Media, Aalto University. The course was a series of scholarly readings about and around the themes of media including media’s relations and impacts on the so-called Anthropocene, thermocultures of media, ecologies of fabrication, media and plastics, Internet of Things, Planned Obsolescence, e-waste, and media’s energetic landscapes. A key approach of the course was also introducing artistic methods and practices that could address emerging media materialities. The final exhibition of the course was a collection of student artworks as a response to the contemporary discourse of political economy of media and related environmental implications.

DOWNLOAD PDF: http://blogs.aalto.fi/mediainfrastructures/files/2020/01/Infragraphy_Fall2019_WEB.pdf

The Anthrobscene – Course Exhibition 22.11 – 9.12.2019

Artists: Reishabh Kailey, Gurden Batra & Serpil Oğuz. Discarded electronics and wood, 2019

The Anthrobscene – Media and the Environment Course Exhibition
Department of Media
22 November – 9 December

The Anthropocene is nothing but the Anthrobscene. This obscenity according to media philosopher Jussi Parikka (2015) is— “because of the unsustainable, politically dubious, and ethically suspicious practices that maintain technological culture and its corporate networks. Obscene because this age marks the environmentally disastrous consequences of planned obsolescence of electronic media, the energy costs of digital culture and furthermore the neo-colonial arrangements of material and energy extraction across the globe. To call it anthrobscene is just to emphasize what we knew but perhaps we were shielded away from acting on—that is the horrific human-caused drive toward a 6th mass extinction.” 

The exhibition is a collection of student artworks that deal with the materialities of media technologies. It is a response to the contemporary discourse of political economy of media and related environmental implications. It tackles the Anthropocene through the lens of media theory, culture and philosophy to understand the geological underpinnings of contemporary media. 

Artists: Gurden Batra, Ameya Chikramane, Punit Hiremath, Eerika Jalasaho, Julia Sand, Reishab Kailey, Kevan Murtagh, Hanna Arstrom, Leo Kosola, Takayuki Nakashima, Liisi Soroush, Surabhi Nadig Surendra. 

Artists: Reishabh Kailey, Gurden Batra & Serpil Oğuz. Discarded electronics and wood, 2019

Fictional screams and other assaults

This post includes mentions of sexual assault.

When reading Parikka’s The Anthrobscene, I was particularly appalled by the chapter And the Earth screamed, Alive. There’s something about non-animals, or even non-humans, screaming in fiction that scares the heck out of me but also fascinates me. Humans have always had a thing for humanizing objects and animals, through fables and other stories. This chapter immediately made my think of a scene from the old YouTube phenomena Annoying orange, where a speaking apple is suddenly chopped into pieces by a human, something that’s quickly forgotten by the other fruits witnessing the slaughter.

Parikka, on the other hand, draws a daunting image of Arthur Conan Doyle’s fictional character Professor Challenger, in his short story When the World screamed*, piercing the Earth’s crust and making it scream. Parikka describes this as a rape-like scene and develops this further in the reference section, stating that:

The allusion of rape is made even more obvious when considering the long-term mythological articulation of the earth as female. The female interior is one of valuable riches.

I wanted to shape my own opinion of the matter, so I read the full short story. It can be debated whether Doyle intended this to be a rape scene or not. Professor Challenger himself refers to the drilling as a mosquito penetrating the skin of a human, or “vigorous stimulation of its sensory cortex”. This seems to reflect general assault rather than sexual assault. But then again there is certainly many references to the femaleness of the Earth, and even a sexual one, in conversation with driller Mr. Jones:


Professor Challenger, who is described on one hand as a madman and an abuser, and on the other as a genius and someone that it’s impossible not to admire, has obvious megalomania. He does not empathise with the creature he imagines Earth to be. It seems that it rather annoys or even threatens him that the Earth is so oblivious to humans and their makings. He wants her to acknowledge his existence and he can only come up with one way of doing this – by penetrating her nervous system and causing her pain.

So it’s not clear whether we should read this scene as rape, but if we do, it’s used in a manner that is depressingly common in pop culture. The female character Earth is only present in the story during the assault scene, she doesn’t have a story arc of her own and she doesn’t interact with any other characters than the rapists. She’s only mentioned in relation to the upcoming rape and there are no other female characters in the story. Surely she reacts very strongly to the assault by throwing out the perpetrators and the equipment they’ve used to penetrate her, but it’s also stated that there were no casualties from the event, which means that in the end no one suffered from her revenge act. The story ends on a high note, with Professor Challenger being applauded for his scientific “break-through” of proving that the Earth is alive. Mother Earth heals herself from within and nothing more is told about whatever mental trauma she now has to go through inside her safe womb within layers of metal and soil and beneath her outer surface of plants and water.

We have gotten so accustomed to reading and watching stories of rape this way that we can’t even imagine the alternatives**. The new Netflix series Unbelievable deals with rape in a new way and has been praised in reviews for this. Vulture uses the headline “How Unbelievable Tells a True Crime Story Without ‘Rape Porn’”*** and writes

The Netflix drama is less interested in the rapist and his horrific crimes than in another, more insidious villain: the criminal-justice system.

The series follows two female criminal detectives struggling to gain justice for several rape victims, depicting rape from the victim point of view and not putting much attention the male perpetrator or his psyche. I haven’t yet been able to watch the series myself, but I hope it will live up to its reputation. I can’t help but wonder how Doyle’s short story would have been written had it taken on the same perspective as Unbelievable – following the victim in her fight for justice after the assault, in a world completely uninterested in her version of the story. In the end it makes me question rape as an analogy for man’s destruction of the planet at all. The Earth is, contradictory to Professor Challenger’s ideas, not just one entity but many, and the environmental destruction is complex and takes different shapes in different parts of the world. Giving the planet emotional traits and a gender might make it more human to us but it’s none the less a false perception of reality, a romantic idea of “him” against “her”, with only one potential outcome – she succumbs to his wishes, or else he will take her by force. In this version there is no “us”, no life in harmony with the other, a complete lack of seeing humans as part of the ecosystem and the planet itself. It’s as problematic as the general depiction of women in pop culture, seen as “the other sex”, something exotic. In this version of women, there is a before and an after – once she’s had intercourse, whether consentual or not, she’s not pure anymore and will never be again. This image of the Earth is as damaging as the image of women: Why would we try to save something that we’ve already used and abused? If it doesn’t gain us, the perpetrator, why would we try to improve our actions and reverse some of the harm done?

* https://classic-literature.co.uk/scottish-authors/arthur-conan-doyle/when-the-world-screamed/

** The Black List website found that 2400 out of 45,000 scripts submitted to them included rape. https://blog.blcklst.com/sexual-violence-in-spec-screenplays-8f35268b689

*** https://www.vulture.com/2019/09/unbelievable-netflix-susannah-grant.html

Infragraphy Volume 1, Spring 2019

This first volume of Infragraphy is a compilation of critical student writings and photo essays about media, infrastructure and the environment. These texts are outcomes from the “Archaeology of Media Infrastructures” Master of Arts course in the Spring of 2019 at the Department of Media, Aalto University Finland. The course examined media infrastructures including the concept of deep time, the materialities of the Internet, Artificial Intelligence, digital labor, water, energy, and critical infrastructure.

Download PDF: Infragraphy_Vol1_Spring2019

#Carbonfeed by Jon Bellona and John Park

I came across to this art project which sonifies Twitter feeds and also makes physical data visualizations. I find the one in the image quite powerful and poetic.

With the advent of social media like Facebook, Twitter, and Instagram, humans have increased their production of digital content.[1] Even simple online interactions generate carbon emissions; a Google search has been estimated to generate 0.2 grams of CO2.[2] To keep pace with growing online media, there is an increasing dependence upon data centers,[3] which now account for 2% of the US’s electricity consumption.[4]

source: https://carbonfeed.org

An Increasing Need of Electricity and a Decrease of Biodiversity

I got interested to study a bit more about the idea that birds’ magnetic compass orientation would get disrupted by electromagnetic noise. There has been a debate on does electric and magnetic fields affect biological processes and human health and when the article was written, in 2014 there hadn’t been any scientifically proven effects.

Svenja Engels, Nils-Lasse Schneider, Nele Lefeldt, Christine Maira Hein, Manuela Zapka, Andreas Michalik, Dana Elbers, Achim Kittel, P. J. Hore & Henrik Mouritsen performed controlled experiments in the University of Oldenburg and found out that European robins lose their ability to use the Earths’ magnetic field when exposed to low-level AM electromagnetic noise between around 20 kHz and 20 MHz, the kind of noise routinely generated by consumer electrical and electronic equipment. The birds gained the ability back to orient to the Earths’ magnetic field when they were shielded from electromagnetic noise in the frequency range from 2kHz to 5 MHz or tested in a rural setting.

I found a European Commissions’ Guidance for Energy Transmission Infrastructure from 2018. This is only a guidance in a sense that I am not sure if these are actually taken into account when making decisions about energy infrastructure. What I found interesting in this guidance is that they address that biodiversity is an important element and nature provides important socio-economic benefits to society. It seems that they have a very agricultural, anthropocentric view on nature even though this guidance is made to protect endangered species.

In the guidance for energy transmission infrastructure projects the listed impacts are through clearance of land and the removal of surface vegetation: the existing habitats may be altered, damaged, fragmented or destroyed and the indirect effects could be much more widespread especially when projects interfere with water and soil quality. Also when building the site there will be increased traffic, presence of people, noise, dust, pollution, artificial lighting and vibration and the risks of collision with power cables.

Electrocution can have a major impact on several bird species, and causing the death of thousands of birds annually.

source: https://www.unenvironment.org/news-and-stories/story/planning-can-help-prevent-renewable-energy-surge-harming-wildlife

There is a strong consensus that the risk posed to birds depends on the technical construction and detailed design of power facilities. In particular, electrocution risk is high with “badly engineered” medium voltage power poles (“killer poles”) (BirdLife International, 2007).

By acknowledging the loss of thousands of birds annually because of the energy infrastructure can we say that they are part of energy infrastructure?

source:http://ec.europa.eu/environment/nature/natura2000/management/docs/Energy%20guidance%20and%20EU%20Nature%20legislation.pdf

When Dust is Spice

Over the course of last summer I read one of the most popular science fiction novels: Dune by Frank Herbert. Written in 1965, it has inspired a plethora of other space operas, including Star Wars, a personal childhood favorite. Dune is a quintessential sci-fi novel, and not a flawless [1] one. In certain ways it is quite atypical: Herbert’s style focuses heavily on world-building and ecology of imaginary planets, as well as internal soliloquies and emotions. Both of these aspects have been hard to remediate into movie narratives [2], a format which has dominated the attention of the audiences in the recent decades. This is one of the reasons a vast majority of 80’s and 90’s kids know of the adventures of Luke Skywalker by heart—but the prophecy of Muad’Dib remains mostly unknown to those who don’t geek their way into the genre of hard sci-fi.

Recently I also saw the movie (Dune, 1984, directed by David Lynch) and a miniseries produced for television (titled Frank Herbert’s Dune, 2000), so the narrative revolving around the events of the first book is now fresh in my memory. In his essay Dust and Exhaustion: The Labor of Media Materialism (2013) Jussi Parikka briefly mentions Dune, but does not elaborate on the connection of cognitive capitalism and the world created by Herbert. [3] In this brief post I’m drawing parallels between ecology of the desert planet Arrakis and its “smart dust” Spice, along with cognitive capitalism.

Dust, as Parikka points out, “marks the temporality of the matter” and signifies “transformations of solids to ephemeral and back”. When it comes to ecology, materials may appear stationary, but are in fact in continuous progress: decaying, eroded, moved by the elements, rock turning into sand over the course of millennia. The narrative of Dune begins when the house Atreides settles on the planet Arrakis (also known as Dune), a world of sand—and sole source of the narcotic Spice Melange essential to the technology and development of the world of Dune. The reader soon learns, as members of the Atreides family find out more about their new home, how the ecology and people of Arrakis have been subjected to effects of exploitation by the families who ruled Arrakis before them. One such group and the nemesis of house Atreides is the spartan and immoral house Harkonnen. Water is scarce and thus sacred on Arrakis, but the dust-like Spice is abundant.

The narrative of Dune is likewise abundant with transformations. Nearly all of the characters experience a transformation from what they used to be into something else, processes provoked by the events around the struggle for control of Spice. In Parikka’s words, dust invites us to rethink the binaries of One/many, both singular and individual in its materiality. The transformation from one to many is observed in the prophecy that Fremen—the deeply spiritual people of Arrakis—have of their messianic instructor, Muad’Dib. The Spice permeates everything on Arrakis, and even its presence is enough to notice the changes it brings. In real life, abundant dust presents a health hazard. In the world of Dune, the effects of Spice are more neutral. For example, the eyes of those who consume Spice in excess are dyed blue throughout. Spice can also be refined into Water of Life, a lethally poisonous blue liquid only to be used by those who have received the training and position to ingest and transmute it. Through the transmuted Water of Life, Muad’Dib sees the past and the present, achieving a higher state of consciousness. With this knowledge, Muad’Dib rules the universe as its emperor.

The use of Spice is potentially life-changing, and excessive use alters one’s own physique. The extraction process is also dangerous—a bit like the extraction of minerals in our world, not without psychosocial effects. Networks of labor relations exist on Arrakis, where the ruling house of the planet provides the machinery to search and collect Spice. However, the sands of Arrakis are also inhabited by sandworms native to the planet. Sandworms—and the different stages of its life-cycle—are essential for the Spice Melange to form within the sands of Arrakis. Harvesting Spice Melange would also mean to expose oneself not only to intense conditions of a desert environment, but also the threat of becoming swallowed or trampled by a sandworm, also attracted and drawn to Spice. As the Spice departs Arrakis and is transported and sold into other parts of the universe presented in Dune, the people harvesting it have little knowledge of how it is used and lead a modest life on the desert. Harvesters of Spice appear to be expendable. During a sandworm attack, instead of protecting the harvesting equipment, Duke Leto Atreides decides to protect the people. This humane act is viewed by the workers as outrageous, different than what they are used to—perhaps even foolish. Who would let the collected Spice or equipment go to waste? Some workers are ready to sacrifice themselves for the sake of Spice. Whether this is because of devotion to the society or caused by the addictiveness of Spice remains ambiguous.

Several substances are used in the world of Dune, Spice being overwhelmingly most precious. As mentioned earlier, Spice has many uses. Different coalitions have their own ways to use it. The Bene Gesserit is a matriarchal and ancient order interested in expanding human capabilities when it comes to control and power, as far as hosting an eugenics program; Mentat, a profession/discipline for creating advisors to replace computers and “thinking machines” in a world where they are banned; The Spacing Guild, an organization that had discovered ways of “bending space” and making space travel available at speeds faster than light. All of the groups are invested or at least interested in the control of Spice. (The Mentat utilize the juice of Sapho, the product of another planet, but addictive and increasing the abilities of mind nevertheless.)

“It is by will alone I set my mind in motion. It is by the juice of Sapho that thoughts acquire speed, the lips acquire stains, stains become a warning. It is by will alone I set my mind in motion.”

— Piter De Vries, a Mentat (Dune, 1984 movie)

Bending space in order to traverse it; accessing a collective consciousness and remembering the past; the prescient abilities to rule wisely; the control of one’s own mind and body to become superior in battle; using one’s own voice to bend others into their will. The powerful mental abilities presented in the fantasy of Dune are numerous. In Dust and Exhaustion, Parikka presents us the thoughts of Franco Berardi about cognitive capitalism and the concept of cognitariat, and the different areas affected by it: body, sexuality, mortality and unconsciousness. All of these areas are utilized, emphasized and controlled in Dune, by the spice and/or the schools of thought. The fiction of Dune could be a (re)vision of how cognitive capitalism plays out, with its workers dulled by a narcotic, leaders drunk with power. All human skills packaged into various schools of thought, but all thoughts bound into the purpose and study of how to control, exploit and prosper.

Millennia of development in telepathic and telekinetic powers, established hierarchies, powerful politics and cultural norms are what Muad’Dib must rise against. How does he know he is on the right path and for the actual betterment of humankind when all the other groups claim to do the same thing, or are of the opinion that the current hierarchies must prevail? Despite seeing and knowing the future, Muad’Dib carries the weight alone, loathing himself and the fate he can’t escape. He subdues the exhaustion for all and frees the people on the lowest rank of his universe, but must transcend his identity in order to do so, giving up the path before him. It could be said he experiences a sense of his (former) self—the death of an ego, albeit to be replaced by a new one. He sacrifices personal choices in favor of following the “Golden Path” that ensures the survival of the humankind.

Just like depressed minds in real life struggle to keep up with digital machinery and capitalism, the human race of Dune (and the economy they have created) struggle with the use of Spice and desire for domination of the universe. Despite the interesting combination of technology, ecology and psychology presented in Dune, descriptions of ecological impact of human actions are quite minimal, perhaps easily overlooked in the light of technopositivism of earlier decades. Nevertheless, technology changes us faster than we are able to adapt—just like Spice changes people on Arrakis. In reality however, there are no miraculous mental powers or a messiah coming to our aid—only the metaphysical horrors and blaring of our screens.

 

Notes

[1] As one could expect, a novel written in the 1960s has some issues in the way it presents its villains and female characters, for example, but in order to keep this text concise, I’m not going to write about these topics.

[2] Currently a new attempt at turning Dune into a full-feature movie is underway. The documentary film Jodorowsky’s Dune (2013) also reveals a story behind a failed attempt to film it in the 70s.

[3] Jussi Parikka: Dust and Exhaustion: The Labor of Media Materialism (2013)

Dirty mining and clean data – a story about Swedish industry

I remember very well when in 2013, Facebook opened its first data center outside of the US in Luleå, a northern city in Sweden. It was in all the big news channels. One of the largest and most impactful social media corporations chose Sweden!

For Luleå, the deal with Facebook was a great advertisement for the city. One of the world’s most influential corporations chose to put its facilities there. Data as a product has the appearance of modernity, innovation, high-technology, creativity and in this case, green energy. It goes well with the way Sweden as a nation wants to market itself. Most news articles were written in a weirdly proud manner. The primary reason stated by Facebook was the natural cooling of the servers, provided by the cold climate, and the science magazine Forskning och Framsteg wrote an article jokingly named “This is where your likes are cooling down” (1). I remember spontaneously feeling proud as well. We Swedes are raised with a hate/love relationship to the USA. We love to feel better than the Americans, to look down on them for their capitalist, openly class dividing society structure. But we also watch mostly TV series and movies from Hollywood and think that English is much cooler than Swedish. Secrectly, we all want to move to New York, LA or San Francisco and pursue the American dream. We are sold the idea of a service society, where machines do the dirty work and we can sit back and enjoy our touch screens and fancy clothes.

That dream, however, soon fades if one leaves the big cities. Up until a few decades ago, Sweden was an industrial country, with people working in factories, farms, forests and mines. And even though we are pushed to believe that the industrial society died to give birth to the service based society, Sweden’s economy is still based on those old industries. Facebook and other IT companies make a good front page, but the dirtier industries supplying them with material and energy still exist. And this is where Luleå’s history as an industry city becomes interesting.

Luleå has largely flourished because of the iron mines in Malmberget close by, where Luleå has served as the harbour for exportation of iron goods since late 1800s. The municipality now consists of 77000 people and the city hosts one of Sweden’s leading technical universities. In the meantime, the mining town Malmberget is literally collapsing. The mine has created a 200 meter hole in the ground, constantly growing and swallowing buildings and roads. This has caused the city to expand in new directions and buildings are being moved away from the hole’s edges. In the future, Malmberget will not exist in the place where it is today.

The hole in Malmberget municipality, called Gropen in Swedish.

The mine is utilised by state owned corporation LKAB, which also runs the world’s largest underground mine in the inland city Kiruna (see map below). There, the effects of the mining are even bigger. The whole city of Kiruna is now being moved to a new location since the current one is collapsing. Some buildings are moved, but most of the city will be built completely from scratch to house all the mine workers and other citizens. The new city is said to be financially, socially and environmentally sustainable (2).Kiruna’s new city center in the front, with the mine visible in the far left.

Meanwhile, the ecological impact of the mining industry next door is non-reparable. Mining disrupts the landscape and leaves open wounds in the ground. There is always a risk of toxic contamination of fresh water and lakes. The mining industry in Sweden stands for 10% of the CO2 emissions of the country. The indigenous people of the Nordics, the Sami people, have historically and in the present fought against the mining industries since the effects for them can be loss of land, contamination of fresh water and reindeer routes from summer to winter pasture land being cut off (3). Still today, Sweden’s liberal mineral laws permits foreign companies to exploit land without the owner’s permission. The UN have critiqued Swedish governments for not doing enough to protect the indigenous people and their rights to their land (4).

Kiruna at the top and Luleå at the lower right on Google Maps.

Facebook is now planning to double the size of their data center in Luleå, making it 100,000 sqm. The center is purely driven on water energy, according to Facebook. It directly or indirectly gives full time work for 400 people per year, compared to LKAB who employs around 4000 people in Sweden, with a majority working in the northernmost regions, and indirectly provides work for thousands more through related industries. Sweden’s iron mines jointly produces 90% of the iron in Europe.

Some journalists raised the concern that data centers wouldn’t be able to replace the traditional industries, such as mining and forestry, when it comes to employing large numbers of people. Others have claimed that Facebook is just the first of many data companies that will open centers in northern Sweden, thus leading the way for more work opportunities in the future. But how many jobs can this sector actually produce, and especially in relation to its high energy consumption? Will it be possible for all those data centers to run on water energy? Probably not.

As stated previously on the blog, new media infrastructures are often built on top of existing infrastructures. The data center is no exception. In 1910-1915, a large power plant was built in Lule älv, a river ending in Luleå, to be able to replace some of the coal imported from Europe. But the water flow was too high during Spring. Eyes fell on the newly inaugurated national park surrounding Stora sjöfallen, at the time one of Europe’s biggest water falls. The decision was taken from the government to exclude the water fall from the national park so that it could be dammed, with the consequence that the water flow in the river could be controlled like a tap. The Sami people who fished in the area, and who’s reindeer lands would be put under water, were not asked for permission. If the same decision was taken today, it would lead to massive demonstrations from the public (5). I have been at Stora sjöfallet myself. It is a large silent lake with a small flow of water coming down the water fall.

Surely it isn’t Facebook’s fault that those precious nature resources were destroyed a hundred years ago, and one can argue that the mining industry is necessary for providing the world with minerals. But the societal structure that killed Stora Sjöfallet at the beginning of the century is still working its magic, but now on a global scale. With a promise of work opportunities, multinational corporations are allowed to exploit land and energy resources not just in developing countries, but also in Sweden, whether they are producing minerals or data. Only a tiny portion of the capital produced goes back to the local inhabitants, and even less to the indigenous people. Those mines provide material that is necessary for computers, phones, cables, etc to exist in the first place. So Facebook’s “clean energy footprint” is not so clean after all. But perhaps, if we continue down this path of environmental destruction, the world will look much like the inside of a data center in the end. Lots of blinking machines, but no life.

Facebook’s data center in Luleå, Sweden.

Further readings in English:

http://samer.se/4623

https://www.theguardian.com/cities/2018/dec/02/kiruna-swedish-arctic-town-had-to-move-reindeer-herders-in-the-way

Sources (in Swedish):

https://fof.se/tidning/2017/1/artikel/har-svalnar-dina-likes

https://hallbartbyggande.com/det-nya-kiruna-en-hallbar-modellstad-tar-form/)

https://www.naturskyddsforeningen.se/nyheter/gruvindustrins-gruvligaste-effekter

https://sverigesradio.se/sida/artikel.aspx?programid=2054&artikel=4289211)

http://ottossonochottosson.se/blog/reportage/historien-om-ett-vattenfall/

https://www.lkab.com/sv/SysSiteAssets/documents/publikationer/broschyrer/det-har-ar-lkab.pdf