Category Archives: TECHNOLOGY

Media in the Space

In this article, we do not refer to the environment as in the atmosphere, but to extend beyond the atmosphere at a distance where the earth’s gravitational pull acts on the object at a lighter degree (Low Earth Orbit). Objects in low-Earth orbit are at an altitude of between 160 to 2,000 km (99 to 1200 mi) above the Earth’s surface (Williams, 2017).

The layers of our atmosphere showing the altitude of the most common auroras. Credit: Wikimedia Commons

Credit: ESA

Along with the development of space science and technology, the universe gradually becomes an infrastructure of communication technology. Satellites, spacecraft, missiles, and spacecraft are launched every year. Much of the space infrastructure is located in the Low Earth Orbit. On one hand, media infrastructure in space surely led to human development, enabling possibilities of technology, such as global communication, the internet of things, GPS, thermal imaging, and so on. On another hand, environmental issues are also raised, as space debris has become a prominent issue that is in constant discussion. The European space agency estimates the number of space debris as of February 2020: 34000 objects bigger than 10cm, 900 000 objects greater than 1cm to 10 cm, 128 million objects greater than 1mm to 1cm. Some methods have been discussed to clean up space debris but we are uncertain about the effectiveness of them.

I propose we think critically about the impacts of our innovations, wherever humans can reach, to minimize negative future effects while at the same time soliciting development for humanity.

References:

Williams, 2017. What is Low Earth Orbit? URL: https://www.universetoday.com/85322/what-is-low-earth-orbit/ Accessed 26th Oct 2020.

The European space agency. Space debris by the numbers URL https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers Accessed 26th Oct 2020.

Internet of Things (IOT)

Internet of Things (IOT)

An increasing number of devices are electronic and networked with each other and connected to the Internet. Radio transmitters connected to the devices collect, identify data via compatible networks, and communicate with each other. These devices are called IoT, or Internet of Things. According to a broader definition, cyber systems are also called IoTs. It can be defined as a dynamic, i.e. constantly changing and evolving, global network infrastructure, i.e., a network infrastructure in which physical and virtual “objects” have an identity, i.e., identity, physical characteristics, and a virtual personality. Intelligent interfaces, ie user interfaces that can, for example, adapt to the needs of different users or anticipate user activity, transmit information seamlessly between objects and the data network. The goal of development is for IoT to enable people and devices to connect anytime, anywhere, anytime. IoT increases everyday comfort and ease of use and can be used by both society and individual citizens. [1]

photo 1

The devices are characterized by the fact that they can be used to combine anything, such as smart watches, security systems, activity bracelets, smart homes, remote heating devices, airplanes, gates and doors, home appliances, consumer electronics, just to name a few. The Internet of Things consist of a growing list of Intelligent devices that would augment, optimize, and interconnect every aspect of our daily lives. An object, such as a car, electrical appliance, or grocery, can connect directly to the Internet through a computer component that has an IP address. The component can be, for example, a sensor, an RFID chip or a WLAN chip. Sometimes it is sufficient for the object to have an identifier, such as a parcel delivery code or a unique identifier modified from the registration number of the vehicle to enable the object to be identified on the Internet. The object does not then need to be connected  directly to the internet. Energy companies have provided consumers with smart meters that provide consumers with real-time information on consumption and energy companies can remotely read meters. The Internet of Things can also be utilized in logistics, in which case, for example, food can be measured ambient temperature in the supply chain, and alerts you if the temperature exceeds or falls below a certain limit. [2]

In recent years, digitalisation has also raised its head in the most traditional fields, and drones, for example, are already used in reindeer husbandry to detect reindeer herds from the air. In Oulu, reindeer herding is being developed under the auspices of IOT technology, and as a result, a Rudolf device was created, which can be used to monitor the health status and location of reindeer through a mobile application. In the future, the technology could even be used to prevent animal diseases and traffic accidents. With Rudolf, tracking even a single reindeer is effortless. [3]

photo 2

Digital applications extend their tentacles everywhere in society. Electronic warfare is also present on the battlefield with ubiquitous armored vehicles at the forefront of the attack, in support of the air operation and as part of the reconnaissance system on land, sea and air. Electronic warfare inquires and disrupts enemy systems and protects its own forces from the effects of enemy electronic warfare. [4]

In 2020, the number of connected devices per person was 6.58 and the total number of devices was 50 billion. Smart home appliances in households is highest in China, second highest in the US and third highest in the EU8. [5] Every second 127 new devices are added connected to the internet.

The Internet of Things as a concept is often dated to Mark Weiser’s work on ubiquitous computing at Xerox Parc in the 1980s and 1990s, 9 and as an actual term is dated to 1999, another pivotal  moment in the concept’s  elaboration  is 2008, the year when Internet-based machine-to-machine connectivity surpassed  that of human-to-human connectivity.

Behind the screen

Household objects that are currently being transformed into electronic technologies is not only lengthening, but also beginning to constitute a categorically different media “ecosystem.” How might an attention to these material and environmental effects provide an opportunity for generating new areas of environmental intervention in relation to sustainable media? We can no longer just stare at our own equipment but we must also try to see it from a broader perspective. What lies beyond the screen, of how hardware unfolds (avautua)  into wider ecologies of media devices, and of how electronic waste may evidence the complex ways in which media are material and environmental?

Energy meters are one  example of how recurring access to data about energy consumption is meant to influence behaviour and bring about a reduction in energy use. Attempts have been made to study the routes of how waste is travelling across United States by adding electronic tags into the trash items and tracking their journey.

“Thingification” is an overtly material approach to the previously “virtual” concerns of digital media, and is an industry strategy that is meant to expand the reach, capacities, and economic growth of the Internet. Thingification may make any number of activities and practices within our everyday lives more efficient, sustainable, and safe

Rethingification does not simply involve mapping out the static stuff that constitutes any particular media technology, but rather requires attending to the ways in which things attract, infect, and propagate mediatized relations, practices, imaginaries, and environments. A critical and material media studies might then begin to develop methods and modes of practice that adopt an experimental set of approaches to re-thingification.

Re-thingification of things

IoT has a lot of potential, but its information security is weak or almost non-existent, as systems and devices have been developed for the market quickly and often without compromising on information security requirements. Another challenge is the lack of concrete preparedness for the potential threats to social systems posed by the IoT. For example, in industrial, transport and energy production sites, poorly protected IoT activities can cause significant damage, the effects of which can extend to society at large. [1]

A society built on a large sector of digital information networks is vulnerable in many ways. We have got a taste of the lack of information security in an extensive data breach that targeted patient data in Finland. Cyber ​​hacking can do great damage to the lives of individuals and damage the structures of society. Examples include ensuring the security of power plants, electricity networks and water distribution.

Computer hackers, organized crime, and various fanatics form their own war front, with a front line everywhere. Organized crime can afford to buy the best computers and encryption software on the market. This allows drug offenders to exchange information under the noses of authorities with their 128-bit encryption. Breaking such encryption, according to Adams, will take 40 billion years from a Cray supercomputer. So figuring out the code is laborious even for the U.S. security agency NSA, which is said to have a nearly three-acre cave full of supercomputers. In his book “The Next World War” (1998), James Adams says that high technology means not only superior military power but also a very high degree of vulnerability. For example, a touring man managed to black out four U.S. air control centers while burning a dead cattle in a pit they dug. Below happened to be an important fiber optic cable. [6]

photo 3

As one text collected in The Crystal World Reader, and drawn from the US National Mining Association, remarks, there are at least sixty-six individual Minerals that contribute to a typical computer, and “it should be evident that without many Minerals, there would be no computers, or Televisions for that matter. The minerals needed to build computer networks are not an inexhaustible natural resource. Digital waste is also something that cannot be ignored in the debate on digital information networks.

What do these distributed arrangements and materialities of computation enable, what processes and relations do they set in play and require, and what new environmental effects do they generate? The actual and anticipated debris of electronics might provide one way that we could tune into these material processes to develop practices that speculate about material politics and relations in order to be less extractive and harmful. But this approach would require a re-thingification of things, particularly the Internet of Things.

Reference:

Jennifer Gabrys, “Re-thingifying the Internet of Things,” Sustainable Media: Critical Approaches to Media and Environment, eds. Nicole Starosielski and Janet Walker, New York and London, Routledge, 2016: 180 – 195

[1] https://peda.net/jyu/it/do/kkv/6kvjvtt/6tth/iotieei2

[2]  https://www.ficom.fi/ict-ala/tilastot/iot-esineiden-internet

[3]  https://www.dna.fi/yrityksille/blogi/-/blogs/oulussa-porotaloutta-kehitetaan-nb-iot-teknologian-siivittamana

[4]  7https://upseeriksi.fi/koulutusohjelmat/maavoimienko

[5 ]  The Mobile Economy 2020, GSMA

[6]  https://www.oulu.fi/blogs/seuraava-sota-on-digitaalinen

photos:

1. https://peda.net/jyu/it/do/kkv/6kvjvtt/6tth/iotieei2/iotieei2/e

2. https://www.dna.fi/yrityksille/blogi/-/blogs/oulussa-porotaloutta-kehitetaan-nb-iot-teknologian-siivittamana

3. https://www.digital-war.org/blog

Plastopocene [*]

We are used to take plastic for granted as part of our lives. Plastic is everywhere. More than 300 million tonnes of plastic is produced each year, and according to a UN report, more than 9 billion tonnes of plastic is produced worldwide [1]. By the early 20th century, plastics were used in electric lighting, telephones, wireless telegrams, photography, and sound recordings. In fact, when we look at media devices commonly used over the last century, we find that plastics were crucial to a number of popular media technologies. In 1948, Columbia records introduced a vinyl record. Lightweight polycarbonate plastic is also used in c-cassettes, MiniC´Discs, DVD and Blu-Ray.

Plastic is present in the food packaging, clothing, electronics and pharmaceutical industries, as coatings, in the photographic and film industries, in consumer goods, in childcare – almost everything around us. The electronics industry in Europe uses an estimated 6% of plastics [11] and15-25% of the microelectronics in use (eg smartphones, data computers, tablets) is plastic. Plastic is an ideal insulator because it has poor electrical and thermal conductivity, good formability and is lightweight.

Plastics can be divided into thermoplastics, which do not change when heated and can be reshaped, and disposable plastics, which are used in circuit boards, for example, due to their plasticity and good heat resistance. It usually ends up in a landfill.

In addition, there are bio-based plastics, which refer to plastics processed from renewable raw materials of biological origin. Biodegradable plastics are materials that degrade through a biological process into carbon dioxide and water. Contrary to popular belief, bio-basedness is not a prerequisite for biodegradability or vice versa. [2]

A 1956 world oil production distribution, showing historical data and future production, proposed by M. King Hubbert – it had a peak of 12.5 billion barrels per year in about the year 2000. As of 2016, the world’s oil production was 29.4 billion barrels per year

 

From deep time to the 6th massextinctions

Over more than two hundred years, technocultural systems have transformed significant shares of the Earth’s fossil fuels into heat and plastic. The formation of fossil fuels takes thousands of years, the culture of the plastics industry – extraction, transport, trade, fractionation and conversion into monomers and then polymers and then products that are sold, used and disposed of – takes place within a few months (Marriott and Minio-Paluello 2014) [12]

The overall impact of human societies on earth has led to the anthropocene, a new geological era.

A huge number of living systems are not keeping pace with the ecological changes caused by anthropogenic industrial activities. While some species thrive in these changed conditions, there is an ongoing sixth wave of mass extinction that will be of immense importance to our planet and habitats. This is despite the fact that more than 99 percent of the species that have occurred on Earth have already become extinct (McKinney 1997: 110).

An estimated 5.25 trillion plastic particles floating in the oceans with an estimated total weight of 270,000 kilos. Plastic debris accumulates into large spins that only collect more debris with them.

By 2050, it is estimated that there will be more plastic in the seas than fish.

-Plastics are known to release chemicals that are harmful to the environment, but according to a new study, they also release the greenhouse gases methylene and ethane into the atmosphere. Polyethylene, which is also the most common type of plastic, proved to be the worst producer of greenhouse gas emissions. Polyethylene is used in plastic bags, among other things, and accounts for more than a third of all plastic produced in the world. [3]

Certain forms of bacteria have evolved to inhabit the plastic vortices of the oceans and use it for food. Bacteria are responsible for the most significant changes in the biosphere, the atmospheric oxidation event that occurred 2.3 billion years ago. Microbes also live in the digestive tract of all vertebrates and are responsible for digestion. This raises the question of what we should protect. Aesthetic differences are crucial here; is an easier to feel compassion for a penguin than a micro-organism that requires an electron microscope to examine.

E-waste management, recycling,  environmental pollution and health risks

Since 2015, the global rapidly growing amount of e-waste has exceeded 42 million tons. This poses an ecological, health, ethical and colonialist problem. The global north supplies enormous amounts of waste for recycling and storage in the global south. In the words of geographer David Harvey, “the capitalist economy does not solve its problems, it only moves them from one state to another” **. [4]

Electronic waste mountains are a serious environmental and health risk. Equipment often contains mercury, lead and other heavy metals, various fluorescent and flame retardants, and plastics that, if improperly handled, can contaminate soil, air, and water.  [4] The primary problem of incineration arises from the presence of halogenated flame retardants which release toxic gases. Metals are separated from circuit boards by heating and dissolving in acid. When soaking, wastewater enters rivers as well as soil. In addition, the chemicals used in e-waste treatment are very dangerous to health, and respiratory diseases, for example, are common among scrap collectors in developing countries. Many of them are minor children. E-waste toxins can also cause a variety of birth defects, nerve damage, cancer, and many other health hazards [4]

In the words of geographer David Harvey, “the capitalist economy does not solve its problems, it only moves them from one state to another” **. [5]

Photo: IMPEL-EU European Union Network for the Implementation and Enforcement of Environmental Law

Chemicals that disrupt the endocrine system

Many chemicals are used in the processing of plastics and plastic compounds, which have been found to interfere with the human endocrine system, which is the body’s hormonal function responsible for regulating metabolism, growth, development, reproduction and mood. More common endocrine diseases include diabetes, bone loss, obesity, and various thyroid diseases. [6] How important are the chemicals in plastic compounds in the pathogenesis of these living standards diseases.

The greatest concern about the presence of BPA and phthalates has been raised in food and beverage packaging where chemicals can where chemicals can dissolve and be ingested. In particular, the use of BPA-based polycarbonate in baby bottles has been a concern and in many countries their sale is prohibited by law. BPA and phthalates can be found on computers, CDs and DVDs, and, surprisingly, also on thermal papers, commercial receipts, and ATM printouts. It has been found that BPA is absorbed more efficiently if the skin is wet or oily, whether it has been in contact with e.g. moisturizer or sweaty.

Life after plastic

Modern industrial societies are based on the idea of ​​continuous economic growth. Full employment and welfare services are dependent on economic growth, as are debt and growth-based financing and investment systems. A halt in economic growth would mean the dismantling of services and support systems, debt restructuring, bank failures, high unemployment and the downsizing of the entire welfare state. [7]. Growth and development are largely based on the oil industry, the production of plastics and thus the media at the heart of cultures. Communication, transport, stock exchanges and logistics are built on digital media.

In discussions about the collapse of industrial society, the most topical issue is most often the peak of world oil production defined by M. King Hubbert, followed by the inevitable decline in total production. As oil is the world’s main source of energy and its importance is further emphasized in key areas of society’s infrastructure, the oil peak is considered to be an insurmountable problem and the cause of the collapse. What makes the issue topical is the fact that many people assume that the oil peak was passed between 2005 and 2011, when the world economy would have already reached its peak and would soon go into recession. For example, the financial crisis of 2007-2009 is considered to be the result of an oil peak. [8]

Heinberg does not believe that the oil peak can be solved by technical solutions, as the world economy and technological development are far behind the current problem, oil is also crucial for the production of other forms of energy, and a viable form of energy would only delay rather than prevent a collapse. In his book Powerdown; Options and Actions for a Post-Carbon World, he puts forward as a primary solution a cultural change of direction in which the world abandons the pursuit of growth and high consumption. [8]

Jonathan Huebner, for his part, defined the innovation peak of technological development by comparing the list of major inventions from the Middle Ages to the present with the world’s current population. He found that the peak of innovation was reached as early as 1873 and that the average innovativeness of the world’s population declined throughout the 20th century, despite the fact that the population was more educated and more funds were devoted to research. Based on the innovation curve he has formed, he estimates that in 2005, 85% of all innovations had already been made. According to him, technological development is limited not only by what is physically possible to invent, but also by what is economically possible or sensible to invent. [9]

The collapse of industrial society is seen as a dramatic chain of events that would result in famine, epidemics, the collapse of democratic systems, population displacement, the collapse of safety nets and chaos. As a significant difference from historical collapses, the collapse of industrial societies is seen for the first time in world history as a purely global phenomenon. On the other hand, if humanity is able to renew its culture and values, according to Thom Hartmann, it is possible to build a new society after the collapse that is not based on private property, growth, subjugation and destruction and could therefore be more permanent in structure. [10]

Alternatives are being sought for oil and substitutes are being developed for plastics, such as sunflower oil, seaweed, cellulose and milk. The production of biodiesel, which takes land away from food production, has already been criticized. What about when you want to make more bio-based plastics on the market. It therefore makes sense to focus on the development and production of bio-based plastics in raw material sources that do not compete with food production, [11]

Of the substitutes being developed as a sustainable solution, there are hardly any. They do not solve the problems of continued growth and over-consumption or acquisition. The only solution on a sustainable basis is to seek out the structure of society, worlds of values ​​and material-centredness from society and to look for alternative models of action.

Painting

REFERENCES:

-TECHNOFOSSILS of the ANTHROPOCENE
Media, Geology, and Plastics / Sy Taffel

* ´Plastopocene´ -term copied from: https://ekokumppanit.fi/muoviopas/

[1]  /https://www.maailma.net/uutiset/tuore-tutkimus-muovi-luultua-vaarallisempaa-paastaa-ilmakehaan-kasvihuonekaasuja

[2] s/https://www.pakkaus.com/biopohjainen-ja-biohajoava-muovi-eivat-tarkoita-samaa/

[3]  /https://www.maailma.net/uutiset/tuore-tutkimus-muovi-luultua-vaarallisempaa-paastaa-ilmakehaan-kasvihuonekaasuja

[4]   /https://eetti.fi/vastuullinentekniikka/

/https://www.maailma.net/nakokulmat/muovigaten-jalkipyykki-mita-muovin-dumppaaminen-kehitysmaihin-kertoo-taloudellisesta; **citation  from David Harvey´s lecture ’The Enigma of Capital”, which was arranged in  London School of Economics 26.4.2010

[5] /https://www.maailma.net/nakokulmat/muovigaten-jalkipyykki-mita-muovin-dumppaaminen-kehitysmaihin-kertoo-taloudellisesta; **citation  from David Harvey´s lecture ’The Enigma of Capital”, which was arranged in  London School of Economics 26.4.2010

[6]  https://www.vaasankeskussairaala.fi/potilaille/hoito-ja-tutkimukset/erikoisalat/storningar-i-hormonbalansen-och-amnesomsattningen—endokrinologi/

[7] “Hyvinvointivaltio vaarassa”, Helsingin Sanomat 30.9.2010, s. A5

[8]  Grupp, Adam: Peak Oil Primer energybulletin.net. Energy Bulletin

[9]  Huebner, Jonathan: A possible declining trend for worldwide innovation

[10]  Hartmann, Thom: The Last Hours of Ancient Sunlight. New York, NY: Three Rivers Press, 1997

[11] /https://ekokumppanit.fi/muoviopas/

[12]  TECHNOFOSSILS of the ANTHROPOCENE
Media, Geology, and Plastics

Sy Taffel

The role of Internet of Things creators

The internet is not only about connecting people but also about connecting things. Technological developments have enabled things to sense and share their experience with other things, with or without human interference. (Hougland, 2014). Jennifer Gabrys (2016) takes a focus on the Internet of Things’ (IoT) environmental impacts, pointing out that the increase of IoT devices and applications or “Thingification ” also means the proliferation of digital artifacts and infrastructures. By 2025, it is estimated that there will be more than 21 billion IoT devices (Symanovich, n.d.). Below is a data visualization of the Top 10 IoT segments in 2018 based on 1600 real IoT projects (Scully, 2018). The explosion of IoTs innovations certainly leads to opportunities for both economical and societal developments, while raising critical questions concerning digital obsolescence and thus, its impact on the environment. 

In my opinion, important questions for IoT creators to ask when inventing new ideas are: How does the Internet of Things actually enhance our everyday lives? What are the environmental improvements that are meant to be achieved through these devices? and What ethical implications should be imposed on IoT designs? With the understanding that things are ongoing processes and always with a consequence (Gabrys, 2016). We should pay attention to the materials of our products, to understand their process, and their impacts. Besides, it is our responsibility to communicate with decision-makers on actions that not only minimize negative impacts but also create positive changes. In the end, the companies’ brand, once perceived as environment friendly, will increase its market value.

—-

Hougland, B., 2014. What Is The Internet Of Things? And Why Should You Care? | Benson Hougland | Tedxtemecula. Available at <https://www.youtube.com/watch?v=_AlcRoqS65E> [Accessed 11 October 2020].

Gabrys, J., 2016. RE-THINGIFYING THE INTERNET OF THINGS. In: N. Starosielski and J. Walker, ed., Sustainable Media: Critical Approaches to Media and Environment. Routledge.

Symanovich, S., n.d. The Future Of IoT: 10 Predictions About The Internet Of Things | Norton. [online] Us.norton.com. Available at: <https://us.norton.com/internetsecurity-iot-5-predictions-for-the-future-of-iot.html> [Accessed 11 October 2020].

Scully, P., 2018. The Top 10 IoT Segments In 2018 – Based On 1,600 Real IoT Projects – IoT Analytics. [online] Iot-analytics.com. Available at: <https://iot-analytics.com/top-10-iot-segments-2018-real-iot-projects/> [Accessed 11 October 2020].

The Thingification of Everything

What if everything was connected? What if all the information we need would be just one glance away? What if every single move we make could be translated into data, be documented, and evaluated. What if all our senseless actions and unsustainable behaviors would be visible to everyone. What if, instead of learning a new language, we create one that nobody understands.

Karen Brad wrote that thingification“ the turning of relations into “things,” “entities,” “relata”—infects much of the way we understand the world and our relationship to it.” [1]

it is once again possible to acknowledge nature, the body, and materiality in the fullness of their becoming without resorting to the optics of transparency or opacity, the geometries of absolute exteriority or interiority, and the theoretization of the human as either pure cause or pure effect while at the same time remaining resolutely accountable for the role “we” play in the intertwined practices of knowing and becoming. [2]

What if in our desperate attempts to control what was given to us for free, we cover the world in rubbish and data. What if everything is already connected and our dense species just fails to see it.

 


[1] Karen Barad: Posthumanist Performativity: Toward an Understanding of How Matter Comes to Matter [Signs: Journal of Women in Culture and Society 2003, vol. 28, no. 3] https://www.uio.no/studier/emner/sv/sai/SOSANT4400/v14/pensumliste/barad_posthumanist-performativity.pdf

[2] ibid

The flip side of the media

The flip side of the media

Digital media is often thought to be that environmentally friendly option. After all, it saves huge amounts of information on paper, messages sent via the Internet, remote meetings, information in the web is fast, effortless and energy-saving. However, there is a huge production process behind digital media that is by no means unproblematic.

THE ORIGIN OF MEDIA

In the soil rests the seed of digital media from which it is converted into media in its many forms, global media networks and sophisticated media equipment through mining, chemical processes and a highly refined thermal control system.

The rock is removed by blasting and drilling metals and minerals that, as a result of numerous thermological and chemical processes, reach sufficient concentration, sufficient purity to guarantee media performance, speed of networks and equipment, and a more streamlined appearance of equipment. The functionality of data transmission and cloud services are maintained by means of advanced thermal regulation. A small deviation in temperature can lead to overheating and a network crash.

On our home computers, we look forward to the connection being restored. The blackout of the screen and the interruption of communications may seem like greater adversity and personal punishment. We are accustomed to seeing effective data transfer and access as a right around which much of our lives revolve. However, little has been discussed about the geological and thermodynamic system behind and maintaining seamless data transfer or its climate or social implications.

Both the history of communication and the present have been entirely dependent on metals, of which copper and silica are the most important. Copper and silicon are part of almost all modern media. All metal is bound to the aggregate from which it must be separated. The process requires huge amounts of heat, and only a small fraction of the huge amount of aggregate is clean enough to be used for media needs. Ten kilograms of copper are obtained from a ton of aggregate. The rest of the aggregate is rock waste. Contamination is a by-product of such a process. Surplus rock material is only one part of the waste generated by the process, in addition to the chemicals used, the rock dust generated in mining, the by-products of processing and the used electronic waste. [5]

Many of the raw materials used in electronic equipment come from mines in countries where it is difficult to safeguard fundamental human rights. In the Democratic Republic of Congo, for example, mines owned by insurgents and various paramilitary forces have funded and fed wars that have killed more people than in any conflict since World War II.

Congo and its neighbouring countries account for a large proportion of the tin, tantalum, tungsten and gold used in electronic components. Without them, computers, tablets and cell phones would not work.

Larger-scale mining in particular has also led to significant environmental damage. [1]

Most of our electronic equipment are manufactured in factories whose working conditions do not meet internationally agreed minimum standards. Salaries are not enough to live on, trade unions are banned and many workers live in conditions comparable to slavery. [1]

The biggest environmental impacts of electronic equipment are energy consumption and the resulting greenhouse gas emissions, electronic waste, and the toxic chemicals and heavy metals used in the equipment.

The energy efficiency of the devices has improved but the need for energy is still on the rise as more and more energy is needed for digital media storage and data processing.

Tens of millions of tonnes of electronic waste are generated every year. From Europe, e.g. Nigeria and Ghana leave Europe with a lot of “reusable” equipment that ends up directly in a landfill. An estimated 5-13% of e-waste in the EU is exported illegally.

Electronic waste mountains are a serious environmental and health risk. Equipment often contains mercury, lead and other heavy metals, various fluorescent and flame retardants, and plastics that, if improperly handled, can contaminate soil, air, and water. In addition, many of these substances, as well as the chemicals used in e-waste treatment, are very hazardous

and health, and respiratory diseases, for example, are common among waste collectors in developing countries. Many of them are minor children. E-waste toxins can also cause a variety of birth defects, nerve damage, cancer, and many other health hazards. [1]

COPPER & CRIMES

According to Goldman Sachs, copper and nickel will be found in the soil for another 40 years. [2] The depletion of natural resources is changing the integrated culture, practices, economy, geopolitics and climate conditions of the digital age. [3] An extensive criminal network has already been built around copper. There are motorcycle gangs, individual criminals and organisations like the Italian mafia involved. Thieves, for example, can take church roofs and grounded copper cable along railways and cause considerable damage. The origin of copper is being eradicated and it is often exported to Europe, e.g. For melting in the Baltic countries or chartering e.g. To China. China is the world’s largest producer of copper, and due to China’s high demand for copper, the market price of copper has risen sharply. In Finland, thefts have taken place at construction sites and the roofs of buildings have been stolen. [4]

NUMBER OF COPPER THEFT FROM RAILWAYS IN 2010

Belgium ………… .717 cases

Germany ……… .over 1000 (Jan-Oct 2010). PRICE LABEL: 12-15 million

France ……… 300. Price tag: approx. 35 million euro

Italy …………… ..1341. PRICE LABEL: approx. 4 million euro.

Great Britain …… 2000 (2006-2010) PRICE LABEL: 42 million euro [4]

Italian anti-mafia prosecutor Aldo de Chiara specialices in environmental crimes. He has been investigating an illegal waste management business in Italy in the hands of the mafia. . The most famous and widespread case is called Operazione Nerone where criminals burned waste to get copper.

Aldo de Chiara: These people are reckless and unscrupulous because they know that the criminal activity they are doing is a danger to public health. It is therefore important to point out that burning wires does not just release substances that are harmful to health into the atmosphere, which can cause respiratory symptoms. Combustible landfills also contaminate agricultural land, causing significant damage to the environment. [4]

HEAT AND ENERGY MANAGEMENT

Heat management plays a key role throughout the media production process. The need for temperature control begins already in mining and aggregate processing. The aggregate undergoes innumerable thermological processes before it is a usable metal. A suitable temperature is essential in the manufacture of the devices. Data transfer and data archiving will not work if the temperature is not correct. The wrong temperature in the print media process causes problems with printing papers, printing plates, and printing inks. Preservation of photographs, prints, films, and paintings requires an appropriate temperature. Libraries, archives and digital storage facilities need a suitable temperature. The stock market will collapse if the digital network overheats. [5]

According to several sources, one google consumes as much electricity as a 60-watt light bulb that is on for 17 seconds. The servers are assembled into large data centres whose electricity consumption has been compared to small states, just to mention few examples of energy consumption.

The carbon footprint of digital media is an issue we need to focus on in the future.

[ 1 ]  https://eetti.fi/vastuullinentekniikka/

[ 2 ]  https://www.is.fi/taloussanomat/art-2000001870184.html

[ 3 ] https://www.sitra.fi/artikkelit/trendit-kamppailu-luonnonvaroista-kiihtyy/

[4]  Minna Knus-Galan /Punaisen kullan metsästäjät käsikirjoitus, YLE, MOT

[5] Nicole Starosielski, “Thermocultures of Geological Media,” Cultural Politics, Vol. 12 (3), Duke University Press, 2016: 293-309.

[ 6 ] https://www.karhuhelsinki.fi/blogi/internetin-ilmastouhkat-miten-kayttaa-nettia-ymparistoystavallisesti

Technosymbiosis of media, performance and plastics.

 

Performance art scene can date back to the primitive people in Paleolithic era creating sacred rituals to emulate the spirit world. It is quite burdensome to produce the exact date of birth of the performance art, as in its essence it is a pure transmission of energy between the artist and the audience at certain given time and space; it happens in present – once the piece is over, it is over forever, only the memory of it can stay. This changes, however, with the birth of media technology, in particular the first film camera.

Kodak created first film camera in the late 80s [1], the first transparent and flexible film base material was nitrocelluloid [2], which was discovered and then refined for the use in film. Now, with this first film camera the performances were possible to capture, store and document them for later use. The performance trace was no longer only in viewer’s memory, but also on a piece of paper.

 

(Photo 1: Original Kodak Camera, Serial No. 540, [3])

 

Nitrate film was used for both photographic and cinematic images from late 19th century until late 40s in 20th century [2]. During this time in performance history, quite a popular style was cabaret. With the birth of revolutionary cultural movements like DADA and Cubism, performance art started to shape its importance in the bourgeoisie fine art society. Performance art was considered and still is, nowadays, as one of the purest artistic expressions. Quite challenging to capture the time and space of a certain moment on film, yet quite revolutionary, provocative and important for the history and theory of performance art the photographs were in the beginning of 20th century.

 

Cabaret Voltaire: A night out at history's wildest nightclub - BBC Culture

(Photo 2: Cabaret Voltaire, [4])

 

However, photographs do not depict the movements, the feelings and expressions of the performer. They are just a still candid photograph of a certain time and moment in that given space. During the same era a new art form in media was born – motion pictures and the first synthetic plastic was produced and patented by Leo Baekeland in 1907 [2]. Polymers like cellulose nitrate, cellulose acetate and polyester play an important role in film history as well as in the making and documenting of the performance history. Many film rolls were used and discarded in the landfill, where most traditional plastics might not decompose.

With the creation of digital cameras in 70s and 80s the feeling of many wasteful materials discarded, like film rolls, seems to have disappeared. But is it really quite so? Inside the digital camera, there are many electronic equipments, sensors, detectors that capture the incoming rays and turn them into digital signals. Digital cameras use digital technology. “Plastics are often neglected within materialist accounts of media” as rightfully Sy Taffel said in their paper “Technofossils of the Anthropocene: Media, Geology, and Plastics. Cultural Politics” [2]. If we go beyond digital camera as a medium to document performance art, we can think of  the quite recent concept of the art of the future, for example mixed reality. Mixed reality can truly help the artist to caption their performance forever. The feeling and experience for the viewer is quite different and incomparable to viewing the performance piece, for example, in the form of photograph or a movie. In mixed reality the viewer can be present with the performer in space. It is no longer the documented trace of performance you are viewing, it is almost like a feeling that you are there together with an artist.

Performance art is art quite often without objects that happen in given space and moment. In order to be present, the viewer needs to be physical in that space. But with the help of the media the viewer can experience partially or fully the artwork. Their symbiosis is strong and it plays an enormous role in the history, theory and development of performance as an art form. The symbiosis of media and plastics might not be as visible to the naked eye, however, it is daily there in our everyday lives capturing incoming rays, detecting the change in the environment and responding with the output. We cannot talk about one without the other, thus performance, media and plastics are tied together in the technosymbiosis of anthropocene.

As a final thought, here is a small performance and entertainment to compare thermoplastics and thermoset plastics.

 

(Video 1: Comparison of plastics in digital media 1, thermoplastics examples, by the author)

 

(Video 2: Comparison of plastics in digital media 2, thermoset plastics examples, by the author)

 

References:

[1] Ma, Jonathan. (2017). Film Photography History and Emergence of Digital Cameras. https://sleeklens.com/the-history-of-film-and-emergence-of-digital-cameras/ [Accessed 4 October 2020]

[2] Taffel, Sy. (2016). Technofossils of the Anthropocene: Media, Geology, and Plastics. Cultural Politics. 12. 355-375. 10.1215/17432197-3648906

[3] National Museum of American History. Original Kodak Camera, Serial No. 540. https://americanhistory.si.edu/collections/search/object/nmah_760118 [Accessed 5 October 2020]

[4] Sooke, Alastair. (2016). Cabaret Voltaire: A Night out at History’s Wildest Nightclub. https://www.bbc.com/culture/article/20160719-cabaret-voltaire-a-night-out-at-historys-wildest-nightclub [Accessed 5 October 2020]

 

 

Planned Obsolescence and the Lifespan of Electronics

Back in the 1920s the US automotive industry were faced with a problem. An industry which had long enjoyed explosive growth was now faced with falling numbers. It had taken less than twenty years, after the launch of Ford Model T in 1908, for car ownership to go from a luxury to an assumption. But now the market was hitting a saturation point: most everyone who wanted a car already had one.

As a solution to this, the head of General Motors Alfred P. Sloan Jr. suggested annual design changes to convince buyers that they needed to buy a new car even if the old one still worked fine. The strategy, which he’d borrowed from the bicycle manufacturers, was quickly branded as “planned obsolescence” by critics, though Sloan preferred the term “dynamic obsolescence”. Planned obsolescence has had far reaching consequences not only on the automotive industry, but on the whole field of product design and thus on all the market economies of the world. A shining example of this is modern electronics.

A recent report on ‘electronics and obsolescence in a circular economy’ from the EEA’s European Topic Centre on Waste and Materials in a Green Economy gives us good insights on this issue in the European context and its affects on the environment.

The report states that consumption of electronics has grown steadily over the past decades, mainly driven by information technology, namely smartphones. Today an average of 20 kg of electronics per EU citizen is put on the market every year. Much of this growth in demand can be attributed to falling costs of production: “purchasing a new washing machine, for example, cost 59 working hours work in 2004 but dropped to just 39 hours in 2014 (CECED, 2017)”.  Once discarded only around half of these electronics enter official recycling systems, leaving large amounts untreated. One of the main findings of the report is that the average real lifetime of products is at least 2.3 years shorter than the designers of the products estimate them to be.

Source: ETC/WMGE based on Cordella et al., 2019 and Wieser et al., 2015 for smartphones; Kalyani et al., 2017, King County, 2008 and Wieser et al., 2015 for televisions; Wieser et al., 2015 for washing machines; Rames et al., 2019, EC, 2019 and Wieser et al., 2015 for vacuum cleaners)

The report recommends the EU to pursue policies which enable and encourage circular business models which would extend the lifespans and delay obsolescence of electronics.

 

References

1. Europes consumption in a circular economy: the benefits of longer-lasting electronics https://www.eea.europa.eu/themes/waste/resource-efficiency/benefits-of-longer-lasting-electronics

On the borderline

Standing in the borderline of land and the water with salt water splashing on my face, the words that were discussed during the first Media&Environment -lecture are echoing in my head: ”THERE IS NO NATURE.” There is no nature because everything is mediated -ocean, forest, nature is mediated.  To me who love the sea and feel like home in the forest  it´s quite a provocative line. But what is the behind the line?

In 2000, Nobel Laureate in Chemistry Paul Crutzen noted that the Earth has moved into a new geological era, the anthropocene, or human time. In 2016, naturalists defined the starting point of anthropocene as 1950, when the effects of nuclear experiments are visible in the soil. the beginning of the anthropocene era depends on who is asked. If it is considered to have started in the 1950s, the effects of industrialisation on the environment are ignored. From human kinds impact to the planet there`s no turning back. The footprint of humankind on the planet is far smaller compared to the impact of Ice Eras or asteroids. 

Jussi Parikka is describing the current state of Anthropocene: ´The anthrobscene, referring to the obscenities of the ecocrises.  [1] The impact of humankind is divided into five categories: climate change, mass extinctions, ecosystem loss, pollution, and population growth and overconsumption.

There is no such thing as wild nature. Pollution – including marine plastic waste rafts, microplastic particles, the deposition of composites in the soil and changes in the atmosphere – extends to the point where man does not physically reach himself. Wildlife makes up only three percent of the planet’s megafauna biomass. Everything else is people and cattle.  The wireless network is present almost everywhere, internet cables and gas pipes slice through the seabed,  the atmosphere is full of harmful small particles and microfibers are everywhere; natural resources are used ruthlessly all over the planet.  If the latest geological strata of the country were ever studied, the bones of production animals — broilers, cattle, pigs — would be found en masse among concrete, asphalt, glass, and plastics.

Historian Tero Toivanen points out that: ´Wild nature  exists only in advertisements where the car is sold with the impression that the car enters the wild nature.´ [2].

Reference

[1] The Anthrobscene Jussi Parikka University of Minnesota Press Minneapolis

[2]  Kansanuutiset, Villiä luontoa ei enää ole, Tero Toivanen, interview Katri Simonen

Demand of raw materials in advanced technologies

In her paper “Thermocultures” Nicole Starosielski [1] talks about raw materials needed for media technologies. In order to grasp and understand the paper deeper, I tried to give my own version of the meaning what the compound term “thermocultures” could be. Prefix “thermo” corresponds to something relating to heat, whether “cultures”, in this instance, could correspond the the social behaviour and customs of society.

“Thermocultures” paper gave quite a big overview of how we are treating and transforming the earth’s raw materials currently. “For each ton of ore removed, only ten pounds of pure copper will be produced”. So when the valuable materials are produced, what becomes with the rest of excavated materials. Do they become waste? And where does this culture of pure materials originally come from?

In Cecilia Jamasmie paper “Copper supply crunch earlier than predicted – experts” [2] mentions that “increased consumption from new technologies, including electric vehicles, will drive demand for the metal and its by-products” and that sooner or later the deficit of copper will become visible and evident, as the demand is becoming higher. Copper is one of the main metal of transition and it is an essential component in electronic product manufacture, it is also one of the best electrical conductors. In Cecilia Jamasmie paper [2] a very fascinating chart was presented about the supply gap of copper:

Copper supply crunch earlier than predicted — experts

Without a doubt, raw materials play an important role to the success of the economy of the country and society, however, raw materials could soon be in short supply, as a direct result of them being in high demand. Perhaps, the purification process needs to be re-thought and certain predictions are required to be understood, which raw materials are needed for resource-sensitive future technologies.

[1] Starosielski, N., 2016. Thermocultures of Geological Media. Cultural Politics, 12(3), pp.293-309.

[2] Jamasmie, Cecilia, 2018. Copper supply crunch earlier than predicted – experts. https://www.mining.com/copper-supply-crunch-earlier-predicted-experts/ (Accessed: 20 September 2020)

Thoughts and trembling while reading Thermocultures of Geological Media by Niclole Starosielski

Media runs on perfection. One of those perfect pillars needed for communication and power transmission is copper. After copper sulfide is mined, crushed and grinded a compound containing 25% copper is left. Useless in the eyes of technology. Only after heavy treatment with thermal techniques a 99% copper substance will remain. Still pathetic in the realm of purity. Another stage of electrolytic refining is needed to generate 99.99 % pure copper. Perfection at last. All that was needed for the blessing of ten pounds of pure copper is the vanity of a single ton of ore and a trail of pollution guarding every step of the way.

The purity that is needed for technology to function is both fascinating and scary. But in this ever-changing world perfection is never lasting. Humankind doesn’t run on perfection, we strive on defects and diversity just like every ecosystem we so desperately try to destroy.

J.M. Barrie, the author of Peter Pan, once wrote: “You can have anything in life if you will sacrifice everything else for it.” When we look at such a feeble and imperfect species such as ourself, the desire for purity is understandable. I just don’t think it’s worth everything.

Computation Under Uncertainty

Nicole Starosielski’s text “Thermocultures of Geological Media” [1] talks about a “culture of purity”, where our cultural imperatives have resulted in us choosing to only use pure metals and other materials in our electronics. Her main critique of this is that the purification process of metals such as copper and quartz is very energy intensive, and that developing technologies which would utilize metals of a lesser purity would result in media with a lower environmental impact. She also says that this kind of technologies, which probably would have to compromise speed and accuracy, would “…significantly alter the form of existing media texts and technologies”. I find the idea interesting but at the same time I finding it very difficult imagining how computation would work in such an inaccurate system seeped with uncertainty.

Our current models of computation rely heavily on reproducibility and stability: bits will not flip randomly (except in extreme cases) and code will always be executed in the same way. Given the same inputs, a set of commands will always result in the same outputs. Introducing uncertainty into this system would not only cause “subtle variations across media objects”, but result in bugs, crashes, corruption and loss of data. Maybe some new computational models could be developed which could better deal with randomness (quantum computation comes to mind), but currently one of our only methods of dealing with uncertainty in computation is by verifying the validity of data and performing recalculations as needed. Already a small amount of uncertainty could cause huge numbers of unnecessary CPU cycles, which across the millions of computers in use today might very well negate any environmental benefits gained from the use of impure metals. And with a high enough level of randomness, even these methods would no longer work and the system would come crashing down under the pressures of uncertainty.

The word “uncertainty” has a negative connotations, even though it is non-partial in the quality of the future it describes. Uncertain events might as well lead to unexpected successes as to devastating failure, but our negativity bias makes us focus and lay greater importance to the latter and makes us uncomfortable in situations where we have too little control of the future. Seen through this lens, the strive to control our future is a very natural trait. In fact, I believe one way to look at the evolution of organisms is as a struggle for control over uncertainty. Existence is an extremely complex system which humans and animals alike have evolved to navigate as best they can in the fight for survival. Excessive uncontrolled futures results in accidents, broken bones, death and the extinction of species.

Ultimately, I enjoyed this thermal perspective on media that Starosielski’s text gave, but question the validity of her thoughts on purity of metals and the possibility of moving away from them in our electronics.

1. Starosielski, Nicole. Thermocultures of Geological Media. Cultural Politics (2016) 12 (3): 293–309.

The Anthrobscene

The beginning of Anthropocene epoch could date back as far as the beginning of the agricultural revolution to as recent as the start of the big technology development in the 1960s. It is connected with the effects of humans on the well being of our planet/the environment and they are getting more and more evident as years pass by.

Back in the 18th century, in the era of colonialism, the raw/unspoiled nature was seen as something that needs improvement, something that doesn’t contribute to the enhancement of our daily lives. Humans fanatically tried to redesign the environment to give it a different, unnatural purpose. Hence began the irreversible influence of mankind on the environment or the era of mankind.

As time passed the increasing numbers of the human population, the advance in technology and the needs of the consumers started to affect the environment and nature more and more heavily. We developed from society needing a pretty restricted list of materials (“wood, brick, iron, copper, gold, silver, and a few plastics”) into a society in which a computer chip is composed of “60 different elements.” [1]

The excavation of those materials presents a great danger to our planet, especially because we need to “dig deeper and deeper” to obtain the desired elements that are slowly running out. The discarded waste and scrap metals from the production of multimedia devices or the discarded devices that are ready for the afterlife are piling up because most of them are either not being recycled or not recyclable at all. That presents an even bigger threat to the environment than the process of obtaining the elements.

In my opinion, the biggest issue is the human’s tendency to adapt and avoid the problem instead of tackling it and changing the way we live to resolve the issue before it starts to haunt us. Technology spoiled us and in a way we keep on playing Russian roulette with our planet. We refuse to be the losers of the climate change issue, but many are just postponing the solutions, passing the problem on to the next generation. But where does it end? Are we able to go back and step out of the luxury of modernisation? Is there enough desire to change things for the better?

In conclusion, the media technologies present a big threat to our planet; consequently to humanity. Our ways of consumption will have to change to efficiently extend the life span of our planet. Instead of doing our best to find a different inhabitable planet, we should focus on preserving this one.

References:

1. Jussi Parikka, “The Anthrobscene”, University of Minnesota, 2015

2. Anthropocene: The Human Epoch, documentary, Canada, 2018

3. Sophie Yeo, 2016, “Anthropocene: The journey to a new geological epoch”, viewed 11 September 2020, https://www.carbonbrief.org/anthropocene-journey-to-new-geological-epoch