Author Archives: Oskar Koli

The Right to Repair

In their article “Zombie Media: Circuit Bending Media Archaeology into an Art Method”[1], Garnet Hertz and Jussi Parikka propose repurposing media and electronics that are past their prime as a method of media archeology and an artistic practice. Reading this, I wondered how the practice will be affected by the miniaturisation of electronic components. Gone are the days of easily modifiable circuits with through-hole electrical components; modern circuits use surface-mounted components and multilayered PCB boards. Most examples of circuit bent electronics are old for a reason: modern electronics are difficult to modify.

Through-hole resistors

Surface-mounted resistor

Related to the difficulty of modification is the challenges in repairing electronics. Modern electronics are notoriously difficult to fix once broken. This difficulty is in part caused by their complexity and the aforementioned modern construction methods, but crucially it is also because of purposeful obstruction by the companies that produce the electronics. Not only do companies by design make the electronics difficult to repair, for example by using proprietary screw heads to make the cases difficult to open, but many, such as Apple Inc, make it contractually illegal to even open the device. No wonder that 57% of Europeans report not fixing their phones because of expensive or unavailable repair options[2].

In reaction to this, a movement has emerged in the past decade calling for the right to repair. It advocates for legislation which would make repairing easier, by making contractual repair restrictions illegal and by compelling companies to release documentation for how to repair their devices. Having originally gained traction in the US in cases such as automobile repair and farmers not being allowed to repair their tractors, the movement has now caught root in the European Union. A “Circular Economy Action Plan” draft in 2020 calls for the standardization of parts, such as charge cables for phones, and for making it easier for consumers to have their electronics repaired[3].

[1] “Zombie Media: Circuit Bending Media Archaeology into an Art Method”, Garnet Hertz & Jussi Parikka

[2] “Identifying the Impact of the Circular Economy on the Fast-Moving Consumer Goods (FMCG) industry: Opportunities and challenges for businesses, workers and consumers – mobile phones as an example”, European Economic and Social Committee, 2019,  https://www.eesc.europa.eu/en/our-work/publications-other-work/publications/identifying-impact-circular-economy-fast-moving-consumer-goods-fmcg-industry-opportunities-and-challenges-businesses 

[3] “Europe Wants a ‘Right to Repair’ Smartphones and Gadgets”, New York Times, 2020, https://www.nytimes.com/2020/03/12/world/europe/eu-right-to-repair-smartphones.html

Planned Obsolescence and the Lifespan of Electronics

Back in the 1920s the US automotive industry were faced with a problem. An industry which had long enjoyed explosive growth was now faced with falling numbers. It had taken less than twenty years, after the launch of Ford Model T in 1908, for car ownership to go from a luxury to an assumption. But now the market was hitting a saturation point: most everyone who wanted a car already had one.

As a solution to this, the head of General Motors Alfred P. Sloan Jr. suggested annual design changes to convince buyers that they needed to buy a new car even if the old one still worked fine. The strategy, which he’d borrowed from the bicycle manufacturers, was quickly branded as “planned obsolescence” by critics, though Sloan preferred the term “dynamic obsolescence”. Planned obsolescence has had far reaching consequences not only on the automotive industry, but on the whole field of product design and thus on all the market economies of the world. A shining example of this is modern electronics.

A recent report on ‘electronics and obsolescence in a circular economy’ from the EEA’s European Topic Centre on Waste and Materials in a Green Economy gives us good insights on this issue in the European context and its affects on the environment.

The report states that consumption of electronics has grown steadily over the past decades, mainly driven by information technology, namely smartphones. Today an average of 20 kg of electronics per EU citizen is put on the market every year. Much of this growth in demand can be attributed to falling costs of production: “purchasing a new washing machine, for example, cost 59 working hours work in 2004 but dropped to just 39 hours in 2014 (CECED, 2017)”.  Once discarded only around half of these electronics enter official recycling systems, leaving large amounts untreated. One of the main findings of the report is that the average real lifetime of products is at least 2.3 years shorter than the designers of the products estimate them to be.

Source: ETC/WMGE based on Cordella et al., 2019 and Wieser et al., 2015 for smartphones; Kalyani et al., 2017, King County, 2008 and Wieser et al., 2015 for televisions; Wieser et al., 2015 for washing machines; Rames et al., 2019, EC, 2019 and Wieser et al., 2015 for vacuum cleaners)

The report recommends the EU to pursue policies which enable and encourage circular business models which would extend the lifespans and delay obsolescence of electronics.

 

References

1. Europes consumption in a circular economy: the benefits of longer-lasting electronics https://www.eea.europa.eu/themes/waste/resource-efficiency/benefits-of-longer-lasting-electronics

Computation Under Uncertainty

Nicole Starosielski’s text “Thermocultures of Geological Media” [1] talks about a “culture of purity”, where our cultural imperatives have resulted in us choosing to only use pure metals and other materials in our electronics. Her main critique of this is that the purification process of metals such as copper and quartz is very energy intensive, and that developing technologies which would utilize metals of a lesser purity would result in media with a lower environmental impact. She also says that this kind of technologies, which probably would have to compromise speed and accuracy, would “…significantly alter the form of existing media texts and technologies”. I find the idea interesting but at the same time I finding it very difficult imagining how computation would work in such an inaccurate system seeped with uncertainty.

Our current models of computation rely heavily on reproducibility and stability: bits will not flip randomly (except in extreme cases) and code will always be executed in the same way. Given the same inputs, a set of commands will always result in the same outputs. Introducing uncertainty into this system would not only cause “subtle variations across media objects”, but result in bugs, crashes, corruption and loss of data. Maybe some new computational models could be developed which could better deal with randomness (quantum computation comes to mind), but currently one of our only methods of dealing with uncertainty in computation is by verifying the validity of data and performing recalculations as needed. Already a small amount of uncertainty could cause huge numbers of unnecessary CPU cycles, which across the millions of computers in use today might very well negate any environmental benefits gained from the use of impure metals. And with a high enough level of randomness, even these methods would no longer work and the system would come crashing down under the pressures of uncertainty.

The word “uncertainty” has a negative connotations, even though it is non-partial in the quality of the future it describes. Uncertain events might as well lead to unexpected successes as to devastating failure, but our negativity bias makes us focus and lay greater importance to the latter and makes us uncomfortable in situations where we have too little control of the future. Seen through this lens, the strive to control our future is a very natural trait. In fact, I believe one way to look at the evolution of organisms is as a struggle for control over uncertainty. Existence is an extremely complex system which humans and animals alike have evolved to navigate as best they can in the fight for survival. Excessive uncontrolled futures results in accidents, broken bones, death and the extinction of species.

Ultimately, I enjoyed this thermal perspective on media that Starosielski’s text gave, but question the validity of her thoughts on purity of metals and the possibility of moving away from them in our electronics.

1. Starosielski, Nicole. Thermocultures of Geological Media. Cultural Politics (2016) 12 (3): 293–309.

Terminology in the Anthropocene

The world feels overwhelming at times.

We relate everything to everything and problematize without limit. Murder and theft of land can through Adam Smith’s invisible hand, global trade networks and under sea cables be traced to me not recycling thoroughly enough. Not to say that we shouldn’t see the truth of this, just that it’s exhausting. The world is so complex. There is always another angle to everything, always new terminology to comprehend. There are no Simple Truths™.

In the spirit of this mood, while reading Jussi Parikka’s The Anthrobscene [1], I wondered what the point of coining new terminology is. Specifically, why do we need a term like “the anthopocene”, or any of its’ contenders like Parikka’s “anthrobscene”?

While looking for answers to this question I found an interview [2] of Erle Ellis, an environmental scientist who is a part of the Anthropocene Working Group. In the interview he explained his stance on why formally defining and accepting the term is important:
What’s at stake here, outside the domains of geology and stratigraphy, is a new story of human social relations with Earth. The Anthropocene changes the story from one in which human and natural history play out in separate theaters, to one in which humans shape Earth’s past, present and future. In the Anthropocene, it really matters what humans do to Earth. By placing humanity firmly in the role of an Earth-changing force, with all of its complexities, the Anthropocene demands answers to some hard questions – what are we doing with Earth? Are we doing the right things? What can we do better? And the most challenging question of all: Who is or are “we”?

This is the explanation I’d been looking for. Obviously it doesn’t give me any simple truths, but it seems like a good enough reason to add another complex term into this already complex world.

1. Parikka, Jussi. The Anthrobscene. University of Minnesota Press, 2014.
2. futureearth.org: Why efforts to define the Anthropocene must be more inclusive and transparent