

Algorithma

Mrkšić Kovačević S., Bouder F., University of Stavanger Payne K., Vass C., University of Manchester

Background

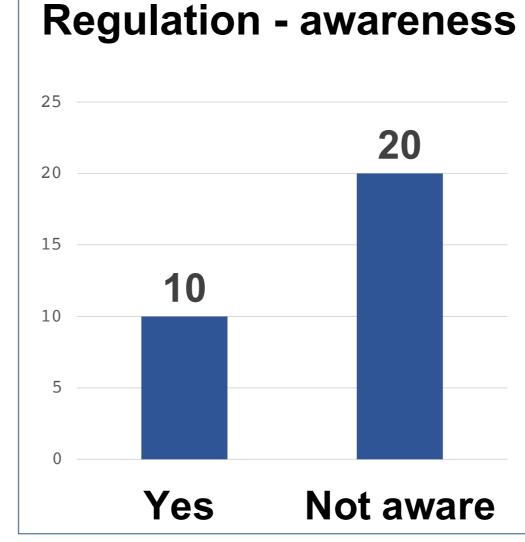
- One of the fundamental tools used in precision medicine are algorithms, which are becoming more complex and particularly influenced by the wider use of Artificial intelligence (Love-Koh, et al. 2018; Faulkner, et al. 2020)
- Facing missing information on how or why something reproducibly works could make algorithms obscured even to their developers (Nicholson Price II, 2017)
- Although they can be of enormous aid in unfeasible activities for humans, algorithms can also result in errors typical for automated systems, leading to a new range of ethical and policy concerns (OECD, 2017; Watson et al. 2019)
- Following the ambiguity of what an algorithm represents in precision medicine and challenges surrounding their development, regulation, and future, we investigated these issues further

Method

List of 13 questions with potential sub-questions

30 semi-structured interviews with experts across Europe/US

Transcription of the audio recordings


Content analysis

Results

Results

When you say an algorithm, I mean sometimes it can be a computer program, but sometimes it is just a part of a clinical assessment, and it is kind of an algorithm that is in the clinician's head. (INT1)

- Multiple respondents stress the need for the right data in algorithm development, along with addressing the challenge of providing high-quality longitudinal data
- Providing evidence is seen as particularly demanding within rare diseases
- The relevance in use of genomic and genetic data should depend on the type of disease in question
- Lack of threshold indicating whether an algorithm is good enough for being used in practice is present
- Challenges in regulating algorithms reflect mainly in the feasibility of the regulation process and its overall length
- Identified need for enhanced risk communication among practitioners, developers and regulators

Well, I don't think that the regulatory bodies can regulate that anymore, by the time that you regulate the test, the test might have changed or improved, and essentially you need a new evaluation. It should be a collaborative regulation. (INT6)

Conclusions

Challenges identified in the study:

- Ambiguity in the understanding of what an algorithm represents in the context of precision medicine
- Advanced dynamic algorithms are further questioning the current methods used for evaluation
- Complexity and length of the regulation process are two main obstacles hindering wider use of algorithms in the clinical practice
- Extensive use of AI and self-learning algorithms will amplify all these challenges further

What can we do?

We should aim for more data, research, improved regulation and infrastructure. Along with these, enhanced risk communication among stakeholders is seen as a necessity for the responsible use of algorithms within every-day precision medicine.

References

Faulkner, E., Holtorf, A. P., Walton, S., Liu, C. Y., Lin, H., Biltaj, E., ... & Payne, K. (2020). Being precise about precision medicine: what should value frameworks incorporate to address precision medicine? A report of the Personalized Precision Medicine Special Interest Group. *Value in Health*, 23(5), 529-539.

Love-Koh J, Peel A, Rejon-Parrilla JC *et al.* (2018). The future of precision medicine: potential impacts for health technology assessment. *Pharmacoeconomics* 36(12), 1439-1451.

Nicholson Price II, W., (2017). Regulating Black-Box Medicine, Michigan Law Review, vol 116, pp.421-474

OECD (2017), Algorithms and Collusion: Competition Policy in the Digital Age www.oecd.org/competition/algorithms-collusion-competition-policy-in-the-digital-age.htm Watson DS, Krutzinna J, Bruce IN *et al.* Clinical applications of machine learning algorithms: beyond the black box. *Bmj* 364 (2019).