Author Archives: Phuong Nguyen

Media in the Space

In this article, we do not refer to the environment as in the atmosphere, but to extend beyond the atmosphere at a distance where the earth’s gravitational pull acts on the object at a lighter degree (Low Earth Orbit). Objects in low-Earth orbit are at an altitude of between 160 to 2,000 km (99 to 1200 mi) above the Earth’s surface (Williams, 2017).

The layers of our atmosphere showing the altitude of the most common auroras. Credit: Wikimedia Commons

Credit: ESA

Along with the development of space science and technology, the universe gradually becomes an infrastructure of communication technology. Satellites, spacecraft, missiles, and spacecraft are launched every year. Much of the space infrastructure is located in the Low Earth Orbit. On one hand, media infrastructure in space surely led to human development, enabling possibilities of technology, such as global communication, the internet of things, GPS, thermal imaging, and so on. On another hand, environmental issues are also raised, as space debris has become a prominent issue that is in constant discussion. The European space agency estimates the number of space debris as of February 2020: 34000 objects bigger than 10cm, 900 000 objects greater than 1cm to 10 cm, 128 million objects greater than 1mm to 1cm. Some methods have been discussed to clean up space debris but we are uncertain about the effectiveness of them.

I propose we think critically about the impacts of our innovations, wherever humans can reach, to minimize negative future effects while at the same time soliciting development for humanity.


Williams, 2017. What is Low Earth Orbit? URL: Accessed 26th Oct 2020.

The European space agency. Space debris by the numbers URL Accessed 26th Oct 2020.

The role of Internet of Things creators

The internet is not only about connecting people but also about connecting things. Technological developments have enabled things to sense and share their experience with other things, with or without human interference. (Hougland, 2014). Jennifer Gabrys (2016) takes a focus on the Internet of Things’ (IoT) environmental impacts, pointing out that the increase of IoT devices and applications or “Thingification ” also means the proliferation of digital artifacts and infrastructures. By 2025, it is estimated that there will be more than 21 billion IoT devices (Symanovich, n.d.). Below is a data visualization of the Top 10 IoT segments in 2018 based on 1600 real IoT projects (Scully, 2018). The explosion of IoTs innovations certainly leads to opportunities for both economical and societal developments, while raising critical questions concerning digital obsolescence and thus, its impact on the environment. 

In my opinion, important questions for IoT creators to ask when inventing new ideas are: How does the Internet of Things actually enhance our everyday lives? What are the environmental improvements that are meant to be achieved through these devices? and What ethical implications should be imposed on IoT designs? With the understanding that things are ongoing processes and always with a consequence (Gabrys, 2016). We should pay attention to the materials of our products, to understand their process, and their impacts. Besides, it is our responsibility to communicate with decision-makers on actions that not only minimize negative impacts but also create positive changes. In the end, the companies’ brand, once perceived as environment friendly, will increase its market value.


Hougland, B., 2014. What Is The Internet Of Things? And Why Should You Care? | Benson Hougland | Tedxtemecula. Available at <> [Accessed 11 October 2020].

Gabrys, J., 2016. RE-THINGIFYING THE INTERNET OF THINGS. In: N. Starosielski and J. Walker, ed., Sustainable Media: Critical Approaches to Media and Environment. Routledge.

Symanovich, S., n.d. The Future Of IoT: 10 Predictions About The Internet Of Things | Norton. [online] Available at: <> [Accessed 11 October 2020].

Scully, P., 2018. The Top 10 IoT Segments In 2018 – Based On 1,600 Real IoT Projects – IoT Analytics. [online] Available at: <> [Accessed 11 October 2020].

A cycle of plastic karma?

Today, we find plastic in almost everything, in our clothes, computers, phones, furniture, appliances, houses, and vehicles. Synthetic polymers are lightweight, durable, and can be molded in almost any shape. Some usage examples are Bakelite for mechanical parts, PVC for plumbing, electric gears and cases, nylon for packaging, and so on. Since synthetic polymers are durable, plastic takes 500-1000 years to break down. Hence, they often end up in landfills and oceans. More than 8.3 billion tons of plastic waste enter the oceans each year, according to a report by the World Economic Forum [1]. A study suggests that by 2050 there will be more plastic than fish in the ocean.

Concentrations of plastic debris in the world’s surface waters. Credit: Cozar et. al. 

A cycle of plastic karma? Any plastic that is smaller than 5mm can be considered “Microplastic”. Microplastics mainly come from plastic exposed to UV in the ocean and deteriorate into small pieces, then are swallowed by marine species. Following the food chain, microplastic ends up in fishes, shrimps, crabs, and into our bodies. There are at least 269,000 tons floating in the ocean according to a study by 5 Gyres Institute. Microplastics have been found in food and water that humans consume on a daily basis. Although we need more research before panicking, a sagacious person would not be blithe about the possibility of a cycle of plastic karma to future generations. 

In his paper “Technofossils of the Anthropocene”, Taffel asks a key question:

“The key question is not if, but how, we arrive at collective decisions to attempt the rewilding, dispersion, protection, conservation, thinning, or removal of particular types of living and nonliving entities from specific ecosystems, while recognizing that the dynamism of ecological systems means that any certitude surrounding the deep-time impact of such actions is illusory.”

To elaborate on this question, I propose a specific approach: “How might we separate, prevent, remove plastic from the oceans, thus saving marine and human lives?”



Taffel, Sy. (2016). Technofossils of the Anthropocene: Media, Geology, and Plastics. Cultural Politics. 12. 355-375. 10.1215/17432197-3648906. 

Ballerini, Tosca & Pen, Jean-Ronan & Andrady, Anthony & Cole, Matthew & Galgani, François & Kedzierski, Mikaël & Pedrotti, Maria Luiza & ter halle, Alexandra & van Arkel, Kim & Zettler, Erik & Amaral-Zettler, Linda & Bruzaud, Stéphane & Brandon, Jennifer & Durand, Gael & Enevoldsen, Enrik & Eriksen, Marcus & Fabre, Pascale & Fossi, Maria-Christina & Frère, Laura & Wong-Wah-Chung, Pascal. (2018). Plastic pollution in the ocean: what we know and what we don’t know about. 10.13140/RG.2.2.36720.92160. 2020. [online] Available at: <> [Accessed 3 October 2020].

Further Readings:

David Barnes, “Biodiversity: Invasions by Marine Life on Plastic Debris.” Nature, 6883.1 (2002): 808-809. Print.

Derraik, Jose G. “The pollution of the marine environment by plastic debris: a review.” Marine Pollution Bulletin, 44.1 (2002): 842 – 852. Print.

Cancer Villages in Vietnam

Cancer village is the word used in Vietnamese to refer to villages in Vietnam, where many people have cancer because of water pollution. According to the Ministry of Health, as of 2007, there are about 51 villages and communes scattered in 25 provinces/cities nationwide recorded as “cancer villages”. Focusing mainly in the North and Central – where high-intensity handicraft and craft village activities take place (Ha Tay, Bac Ninh, Nam Dinh), near old industrial zones (such as Thai Nguyen, Phu Tho) or near old plant protection warehouses (Nghe An, Ha Tinh) … [1]

Water sources in cancer villages in Vietnam according to the investigation are polluted by pesticides at drug stores, war poisons, graveyards, craft villages, domestic and industrial wastes, and public works. The analysis results of water samples being used for drinking in the “cancer villages” show that most of them are contaminated with microorganisms, some samples have Content of phenol, arsenic or manganese exceeds the permissible standard many times. 

The people of Thong Nhat village (Hanoi) mainly use water from drilled wells.

Image: Contaminated Nhue River (Hanoi, Vietnam) [2]

Case Thach Son Cancer village: The village is contaminated, in both air and water. According to a survey by the Ministry of Natural Resources, the atmosphere here is seriously poisoned by industrial emissions, especially in the area around Lam Thao Supe phosphate factories, Phu Tho battery factory. Besides, the breathing air in Thach Son must receive smoke from 90 brick kilns and the bad smell at the outlet of the wastewater of the Bai Bang paper factory to the Red River. Regarding water sources, both surface water and groundwater in Thach Son are toxic. All lakes and wells are polluted. [3]

From 1991 to 2009, Thach Son commune had 106 people died of cancer, most commonly cancer of the liver, lung, stomach, throat. 19 families with at least 2 people die from this disease (husband and wife, or father and daughter, mother and child), of which more than 3 people have died from cancer. In the Mom Den area, 15 years ago, 200 households had moved to another place by themselves because they could not stand the heavily polluted air from the Lam Thao Supe Phosphate factory. 70% of these families have died of cancer. [4]


I would like to propose three levels of responsibility: Change starts from a systemic level to corporate responsibility and consumerism. The government has the power to gives permission for fabrications’ manufacturing activities on their homeland, hence, takes major responsibility for environmental and social impacts. Corporations must make ethical decisions that impact both the environment and humans. Consumers contribute to the scene by being mindful of everyday consumption, raising environmental concerns, and pushing for systemic changes.

Three levels of responsibility


[1] Nong Nghiep VN. Accessed Sept 28th, 2020.

[2] Image: Suc khoe nguoi Viet. Accessed Sept 28th, 2020.

[3] Vnexpress, accessed Sept 28th, 2020.

[4] Vietnam Plus. Accessed Sept 28th, 2020.


Thermocultures of Geological Media – A summary

The article by Nicole Starosielski examines thermal manipulation in transforming the earth’s raw materials into media and maintaining those materials as media. Examinations include the extraction and refining of Earth’s raw materials into pure materials for media usages, the utilization of air conditioner for even temperature for media productions, and thermal infrared imaging.

Purity of elements: One set of thermal practices is transforming geological matter into the circulation of mass media. Especially refining raw minerals into media materials, where the temperature is used to ensure purity and consistency of materials across media objects. However, it is impossible to reach an entirely pure state of minerals. Mary Douglas defines purity as the designation of one set of phenomena as clean (specifically copper and silicon communication circuits in Nicole’s article) which integrally tied to pollution as a result of a systematic order of elements while rejecting inappropriate ones.

Even temperature: The invention of the air conditioner (1902 by Willis Carrier) was with the intention of standardizing media rather than cooling humans. The reason being the dynamic relationship of pure elements with their surroundings despite an attempt to control their internal composition and limitation of interactions. Nicole takes a look at the fluctuated temperature issues with the printing and lithography industry in the late nineteenth and early twentieth century, which are external climate and excess heat produced during press productions. Air conditioning systems since then has been used in ensuring the precision and efficiency in many other forms of media productions. Eventually, after the standardization of temperature regulation, the thermosensitivities of media persisted. Some examples mentioned are the preservation of analog media like magazines, films, microchips, libraries and archives, architectures, factories; as well as digital media like ensuring the operation of large data centers and computational devices.

Productive variation: In this part, Nicole argues that environmental control is incomplete as the temperature remains a force that affects all thermosensitive bodies despite expansive thermal infrastructures. Temperature variations in the productive ends for the expansion of media and capital, for example, the extractive industry with the increasing use of fiber-optic and thermal infrared image technique in the mining industry.

Thermocultures: The study of thermocultures set light to how matters take shape and circulate through the world and offer a branching path to the geology of media. Thermal control and manipulation are underlying operations of differentiation and homogeneity of contemporary media, and the process of controlling the environment in which materials are reactive or stable and in which transformations can occur.

In this course, we aim to investigate media culture under the belief that there is no nature, but the Earth has already been transformed into a mass body of media. The geology of media investigates the state that makes it possible to transform the Earth into media. This perspective leads to a more important question: What can we change in our system to save the planet Earth?

Douglas, Mary. (1996) 1984. Purity and Danger: An analysis of the Concepts of Pollution and Taboo. NewYork: Routledge.
Parikka, Jussi. 2015. A Geology of Media. Minneapolis: University of Minnesota Press.
Starosielski, Nicole. 2016. Thermocultures of Geological Media. Cultural Politics, Volume 12, Issue 3. Duke University Press.