Some concluding thoughts

The course is coming to an end and it is time to draw some concluding lines about the functions of the nervous system. All in all it is an immensely complex system, with probably still much more to be learned than is currently known. The enhanced brain scanning technology gets ever more accurate, with not having to settle for gross level images, but rather the firing of individual neurons at constantly reducing time delays. The overall progress of neuroscience seems, to me, to follow a more general shift in science, where whole systems, rather than just a few main variables are increasingly getting the credit they deserve. The woods are being distinguished from the trees. We see this in environmental studies where the fragility of whole ecosystems, and the importance of even the smaller parts participating in it, are being noticed. The same line of thinking applies to brain models, where certain areas are no longer thought to be individually in charge of certain functions. Rather than one area taking care of e.g. constructing the visual image, it is born from a co-operation of so many different areas. Not withstanding the brains incredible and mysterious tendency for substituting lost functional areas with other ones.

On learning about the brain, the toughest part for me has been to memorize the names, structures and functions of the myriad of different areas, as well as the knowledge of how each part communicates with one another. The complexity seems, at times, startling and one wonders how can this system be ever fully understood. It also begs the question of how far in general is the collective human mental capacity capable of managing the whole picture.

Surely, different inner fields of neuroscience focus on very narrow aspects and single individuals don’t even try to comprehend the whole picture. That said, it will be interesting to see in the future, are we capable of coping with the full mass of information. In the field of physics, a “collapse” or compression of information holding equations to simplified forms can be seen every now and then. I wonder if the same thing is possible with “descriptive” information? Or will the task of information holding and thus the formation of any meaningful new theories be outsourced to some future AI? Also, today’s brain models seem to be far from complete. The more accurate image we want to create requires taking into account more and more details, eventually going to the level of the whole body. It will be interesting to see is it possible to construct a feasible “mind-brain-structure”, without all the feedback loops of other bodily systems.