Week 3

This weeks topics were the structures and mechanisms associated with synaptic transmission, such as neurotransmitters, receptors, synapses, transmitter synthesis and degradation etc. I was actually quite familiar with most of the structures and functions from my previous studies of physiology. For me, the most intriguing part of the chapter was the question of how to relate the observed processes of neurons to existing theories of information processing.

To come up with a theory, the first thing you need is the elementary units (i.e. building blocks) from which to start working upwards. As far as I understood, the most elementary unit considered in neural information processing is the postsynaptic reception of a single vesicle. This process is tied to our existing theories by measuring the voltage (EPSP) caused by the reception. This way, any measured voltage in the neuron can be reduced to multiples of a single EPSP. Still being new to the subject, I assume the single EPSP’s are central in the modelling of neural information processing, the same way 1’s and 0’s are in explaining computer behavior.

This led to several questions:

Can the information processing of the brain be explained or modelled by XOR operations?

What would be a sensible way to compare the processing capacities of a brain vs a computer? What are the main limitations in the underlying structures? E.g. the speed of current running in neurons vs circuits, synaptic delays vs some components of a circuit, or maybe the wiring (e.g. the brain is not wired as an optimal data processor).